

GROUNDWATER MONITORING – MAY 2024 TOLL SITE TOMAGO Prepared for TOLL GROUP Prepared by RCA Australia RCA ref 12513e-211/0 JULY 2024

RCA AUSTRALIA

ABN 53 063 515 711

92 Hill Street, CARRINGTON NSW 2294

Telephone: +61 2 4902 9200 Email: <u>administrator@rca.com.au</u> Internet: www.rca.com.au

This document is and shall remain the property of RCA Australia. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission supplied at the time of proposal. Unauthorised use of this document in any form whatsoever is prohibited.

	DOCUMENT STATUS						
Rev	Comment	Author	Reviewer	Approved	for Issue (Project Man	ager)	
No	Comment	Addio	Reviewer	Name	Signature	Date	
/1	Final	M Hayyat	A. Sullivan / F Brooker	F Brooker	FTB	19.07.24	

	DOCUMENT DISTRIBUTION					
Rev No	Copies Format		Issued to	Date		
/0	1	Electronic (email)	Toll Group Stefan Nightingale stefan.nightingale@tollgroup.com	19.07.24		
/0	1	Electronic report	RCA – job archive	19.07.24		

Contents

1	INTRODUCTION	.1
2	SITE IDENTIFICATION AND DESCRIPTION	. 2
3	FIELDWORK	.2
4	QUALITY ASSURANCE/QUALITY CONTROL	.4
5	RESULTS	. 5
6	DISCUSSION	. 8
7	CONCLUSIONS	.9
8	LIMITATIONS	.9
REFE	ERENCES	10
GLO	SSARY	11

APPENDIX A

DRAWING

APPENDIX B

CALIBRATION RECORD AND FIELD SHEETS

APPENDIX C

QUALITY ASSURANCE REVIEW AND LABORATORY REPORT SHEETS

APPENDIX D

SUMMARY OF RESULTS

RCA ref 12513e-211/0

19 July 2024

Toll Group Old Punt Road Tomago NSW 2322

Attention: Stefan Nightingale

Geotechnical Engineering Engineering Geology Environmental Engineering Hydrogeology Construction Materials Testing Environmental Monitoring Noise & Vibration Occupational Hygiene

GROUNDWATER MONITORING REPORT – MAY 2024 TOLL SITE, TOMAGO

1 INTRODUCTION

This report presents the findings of a groundwater monitoring round undertaken at the Toll Group's (Toll) Tomago site as part of the continuation of a monitoring programme being implemented at the site.

A total of eleven (11) monitoring wells are located at the site, however one (1) well (MW8) has its entire screened interval situated below the groundwater surface and was replaced (by MW8a) and one (1) well (MW5) is inaccessible under a shed / container. As such, nine (9) of the total 11 groundwater wells are used for long term monitoring. Four (4) of the wells are situated in close proximity to the current and former petroleum storage area and the remainder are situated around the site. The locations of the wells are included on **Drawing 1**, **Appendix A**.

Historical monitoring has identified the presence of hydrocarbons and metals in some wells and ammonia in all wells. The Environment Protection Licence (EPL #20125) for the site was amended, formally in March 2022, to include monitoring of selected groundwater wells at the site. The current EPL requires the following six-monthly monitoring in relation to groundwater:

- Hydrocarbons at MW1, MW2, MW3 and MW4.
- Ammonia, electrical conductivity, nitrate, nitrite and standing water level from MW1, MW2, MW3, MW4, MW6 and MW10.
- Metals at MW1, MW2, MW3, MW4 and MW10.

This report presents the findings of the May 2024 round of monitoring implemented in accordance with the EPL as requested by Stefan Nightingale of Toll. The next monitoring round will be undertaken in accordance with a Sampling and Analysis Quality Plan (SAQP, Ref [1]), issued under section 8 of the EPL. The SAQP has been endorsed by the appointed NSW EPA accredited Contaminated Land Site Auditor.

2 SITE IDENTIFICATION AND DESCRIPTION

The site is described as 12 Old Punt Road, Tomago and Lot 7 DP562394. The site is currently used for the storage of ammonium nitrate, heavy vehicle storage and maintenance works.

Additional site details are shown in **Table 1**.

Current zoning (Ref [2])	E4 – General Industrial	
Current use	Storage of Ammonium Nitrate	
Size of site	2.59ha	
Land use to the: North	Light industrial – petroleum fuel dispensing facility	
South	Light industrial	
East	Old Punt Road, light industrial	
West	Vacant, vegetated land	
Nearest sensitive receptor (human health)	Adjacent residence (although considered to be used as a commercial property) and onsite workers	
Nearest sensitive receptor (environmental)	Unnamed creek approximately 900m to north west, marsh lands approx. 700m to the west and unnamed creek approximately 1km to south west – both of which connect to Hunter River.	

Table 1Site Details

Drawing 1, Appendix A shows the locality and the layout of the site.

3 FIELDWORK

A team of environmental personnel experienced in the sampling and handling of potentially contaminated groundwater undertook monitoring of nine (9) wells on 20 and 21 May 2024 as per the EPL monitoring requirements. The scope of work included:

• Field screening of volatile hydrocarbon vapours in the air space around each well and in the well head space using a photoionisation detector (PID).

- It is noted that none of the wells have a gas sampling cap and as such field screening the air space around the wells was undertaken prior to removing the groundwater well cap and while screening in the well head space was undertaken by immediately inserting the PID probe into the well head space after removal of the groundwater cap. The field screening readings are indictive, noting that there was likely to be some loss of volatiles during the well cap removal process such that the PID readings may not be fully representative of the volatile hydrocarbon vapours within the well head space.
- Dipping of all accessible wells to measure the depth to the groundwater and presence of any phase separated light non-aqueous phase liquid (LNAPL). No assessment for phase separated dense non-aqueous phase liquid (DNAPL) was undertaken.
 - MW5 could not be located due to undercover pavement or containers and MW8 was excluded from the scope.
- Placement of a low flow pump into the well and purging until pH and EC readings stabilised. It is noted that the groundwater within some of the wells was lowered during the purging and sampling process and the recharging of groundwater in these wells was slow.
 - A new bladder was utilised for each well.
- Following the stabilisation of pH and electrical conductivity readings, additional field readings of turbidity, dissolved oxygen, temperature and salinity were recorded, and a sample was collected into laboratory prepared bottles and then placed into an insulated container on ice.
 - Samples were $0.45\mu m$ filtered prior to preservation for metals analysis.
- The samples were transported to the NATA accredited analytical laboratory the same day of sampling and analysed for a suite of chemicals which included benzene, toluene, ethylbenzene, xylene, naphthalene (BTEXN), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury), ammonia and oxidisable nitrogen.

The relevant calibration sheet for the water quality meter and field sheets are attached in **Appendix B**.

The recorded PID readings were 0.0ppm at all wells.

Groundwater was measured to be at between 0m (MW10) and 1.13m (MW7) below the surface.

Visual or olfactory indications of hydrocarbon contamination were identified at well MW4 only during sampling. No LNAPL was identified in well MW4 during gauging or sampling.

Due to the use of designated tubing and bladders, the decontamination of the sampling equipment comprised the rinsing of the pump housing after every sample with potable water and distilled water.

4 QUALITY ASSURANCE/QUALITY CONTROL

RCA has reviewed the quality assurance and control in **Appendix C** and assessed the data as follows:

- Accuracy
 - The accuracy of the data has been assessed by internal means (surrogates, laboratory control samples, matrix spikes and method blanks) as being generally acceptable. All the results were within acceptance criteria or not considered to indicate significant uncertainty.
 - The accuracy of the data has not been assessed by external means due to the extent of the scope.

As such the accuracy of the data set is considered acceptable to the extent it was assessed.

- Precision
 - The precision of the data has been assessed by internal means (duplicates) as being acceptable. All the results were within acceptance criteria or not considered to indicate significant uncertainty.
 - The precision of the data has been assessed by external means (intralaboratory duplicates) as being generally acceptable. The results were within acceptance criteria or minor noncompliance which is not considered to indicate significant uncertainty.

As such the precision of the data set is considered acceptable.

- Completeness
 - All data that was sought during the investigation was able to be retrieved.
 - Chain of custody were completed for all samples.

As such, completeness is considered 100% for the collected samples.

- Representativeness
 - This assessment has considered groundwater contaminant concentrations on-site. The method of sampling was appropriate for the sampling of volatile compounds within water which was a potential concern at the site.

As such the groundwater data is considered representative of the concentrations at the site.

- Comparability
 - Works were undertaken by personnel experienced in the sampling of potentially contaminated groundwater. The methodology of groundwater sampling is consistent with the majority, and the most recent, groundwater sampling techniques.
 - All samples were appropriately preserved for the requested analysis and all groundwater samples were kept on ice or in the refrigerator between sampling and analysis.

- All laboratory analyses have been conducted by NATA accredited methodologies that comply with the international standard methods.
- Comparable analytes shown some concurrence between analytical results. The detected concentrations show some concurrence with field observations of the presence of contamination.

As such it is considered that the comparability of the data is appropriate.

It is therefore considered that the data obtained from this testing is generally accurate and adequately reliable in as far as it can be ascertained.

5 RESULTS

Groundwater results from this sampling round are compared to the relevant criteria in **Appendix D**; the following presents a summary.

Groundwater depths of monitoring wells since 2017 were shown in **Figure 1** below. The groundwater MW10 remains as 0m (at ground level) since the December 2021 monitoring round. Groundwater depths for all the remaining wells were increased since the previous round in November 2023.

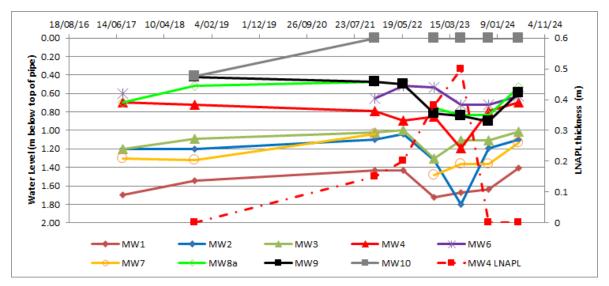


Figure 1Groundwater levels 2017-2024.

Groundwater contours were generated from the water levels using surveyed data for the wells and indicates a westerly flow direction as presented on **Drawing 1**, **Appendix A**, noting that RCA have excluded MW10 based on the understanding that it is representative of a different aquifer. It is noted that the flow direction is consistent with the previous round in November 2023. RCA also noted that the height of the pipe at MW1 is inconsistent with the surveyed difference of top of pipe and ground level and as such has used the ground level survey as the basis for the assessment of groundwater flow direction. The change in pipe height is considered to be associated either with pipe breakage or settling of the previously filled surface. It is noted that based on the MW1 log, the screen remains above the groundwater level.

With regards chemical concentrations:

- pH ranged from 4.21 at MW10 to 7.16 at MW1.
- Electrical conductivity ranged from 0.77mS/cm at MW1 to 17.4mS/cm at MW10.
- BTEX were not detected in monitoring wells MW1, MW2 or MW3 and as such concentrations are below the ecological (Ref [3]) and the drinking water criteria (Ref [4]). The results are generally consistent with previous results.

Benzene concentrations were detected in MW4 at reduced concentrations to that detected in November 2023; the concentration is in excess of the drinking water criterion. Toluene, ethylbenzene and xylene were not detected, and concentrations are well below the drinking water and the ecological criteria.

- It is noted that due to the groundwater depth being less than two (2) metres below the surface, the vapour based human health criteria (Ref [5]) for benzene and F1¹ are not applicable. For completeness only RCA reviewed the results and note that the MW4 concentrations are approximately 0.08% of the benzene guideline criterion and 64% of the F1 criterion.
- The concentration of F2 (TRH >C₁₀-C₁₆) at MW4 of 16,500 mg/L is significantly above the solubility limit of 3.0 mg/L, indicating formation of a separate non-aqueous phase (i.e. LNAPL) is highly likely to occur.
- TRH was detected in MW1 and MW4 and as such are in excess of the ecological criterion (Ref [3]). No detectable concentrations were present in MW2 or MW3. The results of MW2 and MW3 represent a decrease (to between 40-63%) of the November 2023 results whereas the MW1 and MW4 results represent an increase (113% and 6200% respectively). All are within the historical data ranges (refer **Figure 2** below).
- PAH compounds were identified in MW2, MW3 and MW4. Results are all less than the ecological criteria except the naphthalene and phenanthrene concentrations at MW4. The anthracene, benzo(a)pyrene and fluoranthene in this well are inferred to be in excess of the ecological criteria although cannot be distinctly quantified due to the raised detection limit.

No anthracene or benzo(a)pyrene was detected in MW1, MW2 or MW3 however the detection limit of these compounds is in excess of the ecological criterion and drinking water criterion respectively.

- Metals were detected in at least one of the five (5) monitored wells (MW1, MW2, MW3, MW4 and MW10).
 - Arsenic was detected in MW2, MW3, MW4 and MW10; all concentrations were below the ecological and drinking water criteria.
 - Cadmium was detected only in MW10; the concentration was equal to the ecological criterion and less than the drinking water criterion.

¹ TRH C₆₋₁₀ concentrations minus BTEX concentrations. The criteria for TEXN and volatile TRH >C₁₀-C₁₆ for commercial / industrial land use is not limiting.

- Chromium was detected only in MW10; concentrations in excess of the ecological criterion and less than the drinking water criterion (hexavalent chromium criterion is adopted for screening purposes). This is consistent with the historical data range.
- Copper was detected only in MW1; concentrations in excess of the ecological criterion and less than the drinking water criterion, at increased levels since the November 2023 monitoring round.
- Lead was detected only in MW4 and MW10; concentrations are in excess of the ecological criterion and less than the drinking water criterion. The MW4 concentration has slightly increased and the MW10 slightly decreased since the November 2023 monitoring results.
- Nickel was detected in all wells; concentrations are in excess of the ecological criterion at MW2 and MW10 only. All concentrations are increased from those in November 2023 except MW3.
- Zinc concentrations are in excess of the ecological criterion at all wells; concentrations were increased from those in November 2023 with the exception of MW3 and MW4 in which the concentration decreased slightly.
- Ammonia was detected in all wells; concentrations are in excess of the ecological criterion at MW2, MW3 and MW4 only as presented in **Figure 3**. All results represent a decrease to those from November 2023, ranging from 4% to 98% (at MW1). All results were within the historical ranges.
- Oxidisable nitrogen (nitrate + nitrite) was detected in all wells; concentrations are in excess of the ecological criterion at all wells with the exception of MW2, which is equal to ecological criterion as presented in Figure 3. The results represent a significant increase compared to the previous November 2023 monitoring round with exception of MW4. The concentrations are within the historical data ranges with the exception of MW3 and MW6 which were the highest in the relevant historical ranges; the MW10 was equal to the highest in the historical range.

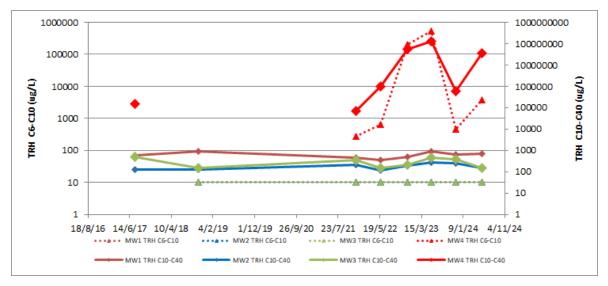


Figure 2 TRH Concentrations 2017-2024 (noting that 2017 data does not include TRH C_6-C_{10} and that MW1, MW2 and MW3 TRH C_6-C_{10} has not been detected such that all data is represented by the MW3 series).

Figure 3 Ammonia and Oxidisable Nitrogen Concentrations 2017-2024.

6 DISCUSSION

Based on the results it is considered that groundwater is impacted by:

- Hydrocarbons in the immediate vicinity of the petroleum infrastructure and historical spill, particularly MW4 which is in close proximity (<5m) from the refuelling area and associated bowser.
- Ammonia and nitrogen in the northern part of the site.

A historical surface hydrocarbon spill occurred at the site and MW1, MW2 and MW3 were installed as part of remediation / validation works. While hydrocarbons have been detected in these wells, the concentrations are minor compared to those detected in MW4. The contamination is considered to be indicative of a diesel product however no specific identification analysis has been undertaken. It is noted that the cause of the increase in hydrocarbon concentrations (since 2021 until May 2024 except previous round November 2023) at MW4 is also unknown in the absence of any known leak of the site's current petroleum facilities.

The concentrations of ammonia at three (3) wells (MW2, MW3, MW4) were in excess of the ecological criterion (Ref [3]) at between approximately 1.1 to 2.0 times the criterion. The highest ammonia concentration at MW2 (the upgradient of the sampled wells) indicated that an offsite source of ammonia is possible, noting that the low result in MW1 indicates significant variation within that well's historical range. The receiving water is considered likely to be the Hunter River however groundwater may first discharge into the wetland area to the north and west of the site or into one of the unnamed creeks to the north west and south west.

Ammonium nitrate is stored at the site however current practices are such that unless there is an accident that results in the breakage of a bulk bag there should not be any product leakage to the ground.

The metals concentrations in the groundwater are in excess of the ecological criteria, however in the absence of any specific source of metals except potentially lead in association with the petroleum contamination, it is not considered that the site is the likely source of the detected metals. Nickel and zinc are the only metals considered to represent a potential risk to the environment. No further action is considered to be necessary with regards to metals concentrations unless concentrations indicate a potential source of contamination at the site.

7 CONCLUSIONS

This report has presented the findings of groundwater monitoring undertaken at the Toll site situated in Tomago which is currently used for storage of bulk ammonium nitrate as well as storage and maintenance of the heavy vehicle fleet.

A total of six (6) groundwater monitoring wells were sampled and chemically analysed in May 2024 in accordance with the EPL requirements. The collected samples were analysed for hydrocarbons, metals and nitrogen compounds including ammonia, in general accordance with the EPL.

No LNAPL was identified at MW4 during field gauging however dissolved hydrocarbon concentrations had significantly increased to greater than 61 times the previous November 2023 result. Hydrocarbon contamination at MW2 and MW3 had decreased by 38% and 61% and increased at MW1 by 13%.

Concentrations of zinc at all five (5) monitored wells, nickel at MW2, lead at MW4, and chromium, lead, nickel at MW10, were in excess of the ecological guidelines (Ref [3]). The source is not considered to be the site in the absence of any known metal contaminating activity.

Ammonia was detected at all wells and in excess of the guidelines (Ref [3]) at MW2, MW3 and MW4. Oxidisable nitrogen was detected at all wells and in excess of the guidelines at all wells except MW2 which is equivalent to ecological guideline. The source is considered to be historical use of the site, given that current site practices appear to be suitable for the minimisation of potential ammonia contamination from the storage of ammonium nitrate at the site. It is noted that the NSW EPA is satisfied with Toll's 'debagging procedure' and has incorporated its implementation to the existing EPL.

The next groundwater monitoring event will be required in accordance with the SAQP (Ref [1]).

8 LIMITATIONS

This report has been prepared for Toll Group in accordance with an agreement with RCA Australia (RCA). The services performed by RCA have been conducted in a manner consistent with that generally exercised by members of its profession and consulting practice.

This report has been prepared for the sole use of Toll Group. The report may not contain sufficient information for purposes of other uses or for parties other than Toll Group. This report shall only be presented in full and may not be used to support objectives other than those stated in the report without written permission from RCA Australia.

The information in this report is considered accurate at the date of issue with regard to the current conditions of the site. Conditions can vary across any site that cannot be explicitly defined by investigation. Environmental conditions including contaminant concentrations can change in a limited period of time. This should be considered if the report is used following a significant period of time after the date of issue.

Yours faithfully

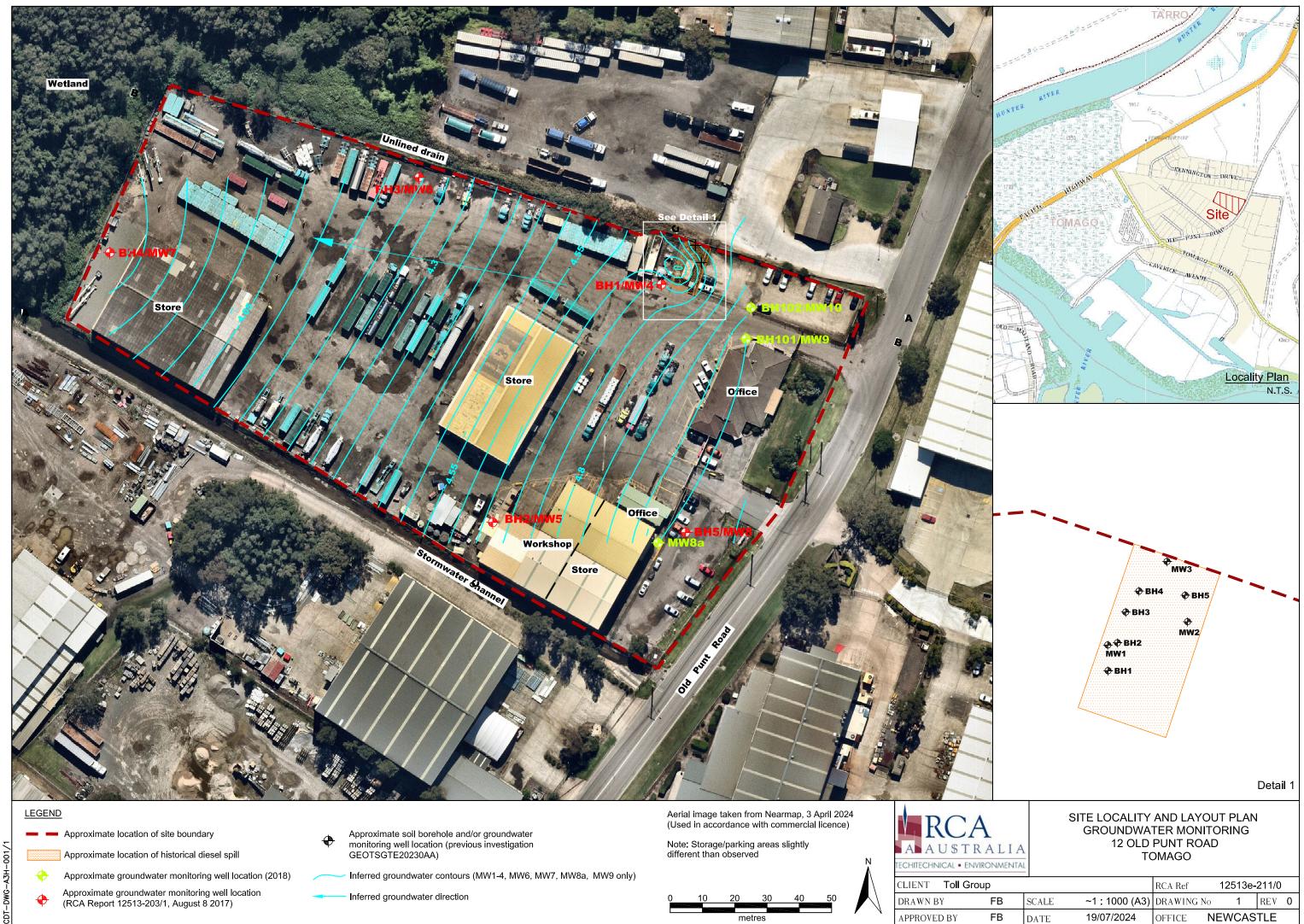
RCA AUSTRALIA

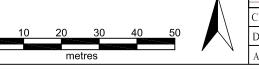
MinHal

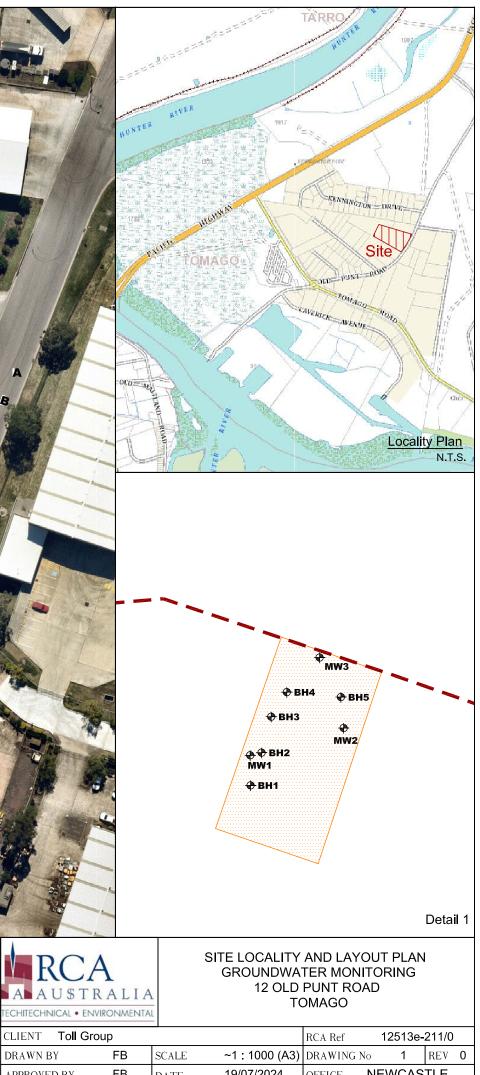
Muhammad Hayyat Environmental Engineer BEng, MEng (Env)

REFERENCES

- [1] RCA Australia, *Sampling and Analysis Quality Plan for Further Groundwater Assessment Works, Toll Tomago Site*, RCA ref 12513d-410/1, July 2024.
- [2] Port Stephens Council, *Port Stephens Local Environment Plan 2013 under the Environmental Planning and Assessment Act 1979* as updated 22 March 2024.
- [3] ANZG, Australian and New Zealand Guidelines for Fresh and Marine Water Quality Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia., August 2018. Available at www.waterquality.gov.au/anz-guidelines.
- [4] National Health and Medical Research Council, *Australian Drinking Water Guidelines*, 2011.
- [5] NEPC, National Environment Protection (Assessment of Site Contamination) Measure, 1999 as amended 2013.
- [6] Standards Australia, *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds,* AS 4482.1-2005.


GLOSSARY


ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure.
Intralaboratory	A sample split into two and sent blind to the sample laboratory for comparative analysis.
kg	kilogram, 1000 gram.
LEP	Local environment plan. A planning tool for the Local Government.
μg	microgram, 1/1000 milligram.
mg	milligram, 1/1000 gram.
NAPL	Non-aqueous phase liquid. This can be lighter than water (LNAPL), or more dense than water (DNAPL).
NEPC	National Environment Protection Council.
NHMRC	National Health and Medical Research Council.
NSW EPA	NSW Environment Protection Authority – made a separate entity in 2011 to regulates the contaminated land industry.
PID	Photoionisation detector. Measures volatile gases in air or emanating from soil or water.
PQL	Practical Quantitation Limit.
QA	Quality Assurance.
QC	Quality Control.
RPD	Relative Percentage Difference.
Chemical Compounds	
BTEXN	Benzene, toluene, ethylbenzene, xylene, naphthalene.
РАН	Polycyclic aromatic hydrocarbons. Multi-ring compounds found in fuels, oils and creosote. These are also common combustion products.
TPH	Total petroleum hydrocarbons.
TRH	Total recoverable hydrocarbons



Appendix A

Drawing

Appendix B

Calibration Record and Field Sheets

SERVICE & CALIBRATION REPORT Water Quality Meter

Customer Details:Job NumberDateRCA24032619/03/202492 Hill Street24032619/03/2024Carrington4ttn: Kenny Yan4ttn: Kenny Yan

Instrument Model:

Instrument Serial Number: 1PH7HSWB 2019

HORIBA U-52/10m 🛛 Multi-Parameter Water Quality Meter

Fault Report

Requires service/calibration.

Repairs Carried Out

Replaced DO membrane. Replaced pH glass electrode (slow response). Refilled pH reference electrode (solidified). Cleaned all sensors (dirty). Re-calibrated all sensors as follows:

Calibration (in accordance with manufacturer's specifications):

Parameter - unit	Before Calibration	Calibration Value	After calibration	Comment
рН (рН)	6.63	7.01	7.01	Pass
рН (рН)	4.51	4.00	4.00	Pass
ORP (mV)	238	225	225	Pass
Conductivity (mS/cm)	0.000	0.000	0.000	Pass
Conductivity (mS/cm)	0.702	0.718	0.718	Pass
Conductivity (mS/cm)	6.52	6.67	6.67	Pass
Conductivity (mS/cm)	58.1	58.6	58.6	Pass
Turbidity (NTU)	12.8	0.0	0.0	Pass
Turbidity (NTU)	35.1	8.0	8.0	Pass
Turbidity (NTU)	91.2	80.0	80.0	Pass
Turbidity (NTU)	409	400	400	Pass
D.O. zero (mg/L)	0.00	0.00	0.00	Pass
D.O. zero (mg/L)	7.71mg/L @ 23°C	8.81mg/L @23°C	8.81mg/L @23°C	Pass
Temperature (°C)	24.83°C	24.9°C	24.9°C	Pass
Sensors:		-		
pH Glass Electrode	pH Ref Electrode	ORP Ele	ectrode	DO Electrode
211143	WGTAD2NV	NHOO)S3C6	X3H6CF5A

Comments:

MAKE SURE the pH reference electrode is refilled with soln #330 regularly. If the #330 soln solidifies inside the pH reference electrode, remove the liquid junction cap (flat black rubber cap with wick in the middle) and rinse out the old solution with distilled water. Then refill with fresh HORIBA soln # 330 and refit the liquid junction cap. Please read the notes on pH maintenance.

Calibration carried out by:

Tony Fincher

AUSTRALIAN SCIENTIFIC PTY LTD

11 McDougall Street, Kotara, NSW, 2289 TEL: 1800 021 083 E-mail: sales@austscientific.com.au

www.austscientific.com.au

ENGINEERING FIELD SHEET

WATER GAUGING RECORD

CLIENT: Toll Group	DATE: 20-5-2024
PROJECT: Groundwater Monitoring Programme	PROJECT No: 12513e
LOCATION: Toll Tomago Site	CLIENT REF:
BORE OR LOCATION ID: MW1	
тиме: 12:45 то 12:50	
BORE DEPTH: 2,35m (m TOP) HEIG	HT ABOVE GROUND LEVEL: 0, 77m
DEPTH TO LNAPL: N/A	PID SURFACE (ppm):
DEPTH TO AQUIFER: 1.41 m	PID IN WELL (ppm):
BORE OR LOCATION ID: MW2	
тиме: 12:50 то 12:55	
BORE DEPTH: 2,87 (m TOP) HEIG	HT ABOVE GROUND LEVEL: 0,6 m
DEPTH TO LNAPL: NA	PID SURFACE (ppm):
DEPTH TO AQUIFER: 1.10M	PID IN WELL (ppm):
BORE OR LOCATION ID: MW3	
TIME: 12-55 TO 13:00	
BORE DEPTH: 3.23 (m TOP) HEIG	HT ABOVE GROUND LEVEL:O.48m
DEPTH TO LNAPL: NA	PID SURFACE (ppm):
DEPTH TO AQUIFER:	PID IN WELL (ppm):
BORE OR LOCATION ID: MW4	
тиме: 13:40 то 13:45	
BORE DEPTH: 3,3 (m GL) HEIG	HT ABOVE GROUND LEVEL:
DEPTH TO LNAPL: NA	PID SURFACE (ppm):
DEPTH TO AQUIFER: 0.7 m	PID IN WELL (ppm):
BORE OR LOCATION ID: MW5 Cannot loc	ate
тіме: то	
BORE DEPTH: (m GL) HEIG	HT ABOVE GROUND LEVEL:
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER:	PID IN WELL (ppm):

RCA Australia Sampled by: AHIMH Date: 20, J-20	f
--	---

BORE OR LOCATION ID: MW6
TIME: 13:05 TO 13:10
BORE DEPTH: 3,2.2 (m GL) HEIGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL: NA PID SURFACE (ppm):
DEPTH TO AQUIFER: 063 M PID IN WELL (ppm): 0
BORE OR LOCATION ID: MW7
TIME: 13:15 TO 13:20
BORE DEPTH: 3.04 (m GL) HEIGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL: NA PID SURFACE (ppm):
DEPTH TO AQUIFER: PID IN WELL (ppm):
BORE OR LOCATION ID: MW8a
TIME: 13:35 TO 13:40
BORE DEPTH: 1,36 (m GL) HEIGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL: NA PID SURFACE (ppm):
DEPTH TO AQUIFER: 0,53 M PID IN WELL (ppm):
BORE OR LOCATION ID: MW9
TIME: 13:30 TO 13:35
BORE DEPTH: 2,84 (m GL) HEIGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL:
DEPTH TO AQUIFER: 0,59 m PID IN WELL (ppm):
BORE OR LOCATION ID: MW10
TIME: 13:25 TO 13:30
BORE DEPTH: 2.9 (m GL) HEIGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL: PID SURFACE (ppm):
DEPTH TO AQUIFER: O PID IN WELL (ppm):

RCA Australia	Sampled by: AH (MM	Date: 20. 5.24
	Page <u>2</u> of <u>2</u>	EFS-WSR-001/4

ENGINEERING FIELD SHEET

WATER SAMPLING RECORD

	WATER SAN	IPLING RECORD		
CLIENT: Toll Group			.	- 01
PROJECT: Groundwater Mon	itoring Programma		DATE: 21-0	5-24
LOCATION: Toll Tomago Site	ing rogramme		PROJECT No:	12513e
WATER METER USED:			CLIENT REF:	
METHOD OF SAMPLING:	1 1 01	0		
	Low flow	- ····		
PRESERVATION & STORAGE (TICK	i): Field Te	emp Chi	lled (<4°C)	
Un-preserved Preserved:	Acid (H ₂ SO ₄)		_	Frozen
TESTS REQUIRED: Refer to Each		Acid (HNO ₃)	Alkaline (NaOH) Filtered
BOREORIOCATION				
TIME: 1010 the	ANALYSI	S NEEDED: Ammonia, N VOLUME PUE	litrate Nitrite EQ 11	
RESULTS OF WATER QUALITY CH	10:50	VOLUME PUR	GED:	
Check No. pH Conductivity (n			-100	is than 12.
1/ 22 21		/ Dissolved O ₂ (mg/L) Temperature (°C)	Solinity (9/)
21 7.11 0.00	0 653	1:46	19.66	Salinity (%)
3/ //6 0-//	48-	0 1.04	19.40	0.040
4/			1/10	0.058
5/				
6/				
Sample Appearance: New To Slig	6111/1 / 1	1		
Dupli cate/Equipment Wash Identifica	If turbe	ap nº odou	1.	
	and Other Ren	nárks:		
BORE OR LOCATION ID: MW2	ANAL YSIS	NEEDED		
TIME: 10.55 TO	11. Stan	NEEDED: Ammonia, Nite	rate, Nitrite, EC, Hydr	ocarbons, metals
RESULTS OF WATER QUALITY CHEC	CK	VOLUME PURG	ED: <u>317</u>	-
Check No. pH Conductivity (mS				
6.28 6.83		Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)
p21 6.15 6.98	60.4	3.70	20-79	0:383
1/ 3/ 6:21 6:31	52.5	2.60	20-63	0.278
41 6.25 5.91	Up.C	3:3	20.35	0-337
5/	105	2.70	20-22	0.315
6/				
Sample Appearance: Sligh	its terti	d. Data I.A.	,	
Duplicate/Equipment Wash Identification	on and Other Rema	rks: 1 1/21	m, po ade	our.
	V	- <u>yo</u>		
BORE OR LOCATION ID: MW3				
TIME: 12 al 0	ANALYSIS NE	EDED: Ammonia, Nitrat	o Nitrita Eo ti	
RESULTS OF WATER QUALITY CHECK	12.45	VOLUME PURGE	e, Nitrite, EC, Hydroc	carbons, metals
			-SL	
Al Conductivity (mS/c	m) Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	
21 634 612	439	20035	211 0	Salinity (%)
3/ 6.38 5.12	523	0.21		0.557
4/	472	0.28	20.62	0-316
5/			2093	0.261
6/				
Sample Appearance:	6/1			
Duplicate/Equipment Wash Identify	Juyad,	Pale brown	101	
Duplicate/Equipment Wash Identification	and Other Remark	S:	no od	chan.
RCA Australia	Sampled by:			
	y.	1	Date:	
2.27	Page of			
0	-77		EFS	-WSR-001/4
/	/ /			

BORE OR L	OCATIO	NID: MW4	ANALYSIS N	EEDED: Ammonia, Nitr	ate, Nitrite, EC, Hydr	rocarbons, metals
TIME:	1.001	In TO		VOLUME PURG		+
	F WATE	R QUALITY CHECK		 Schmassickenkeskerspeckelster Sch 	Do not sample i	f LNAPL present
Check No.	pН	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)
1/	6.40	11.4	Ø	0.67	21.59	6.626
2/	6.49	7.30	0	0.94	21.36	0.394
3/	6.49	7.18	71000	0.80	21.38	0.40%
4/	6.46	7.41	71000	0.77	21.43	0.410
5/		l ·		· · · · · · · · · · · · · · · · · · ·		
6/						
Sample App	bearance:	Turseturbick -b	Sulta 1	10 actory, Dar	& gray, 1	udvocation of
Duplicate/E	quipment	Wash Identification ar	d Other Rema	rks: <u>aily ch</u>	eong	0
				1	~	
				V		
BORE OR L	OCATION	ID: MW6	ANALYSIS N	EEDED: Ammonia, Nitr	ate, Nitrite, EC.	
	7.10 A		.58	VOLUME PURG		
(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	1 1	R QUALITY CHECK	and the second s		- 200	
Check No.	Ha	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)
1/	5.15	5.54	ð	6.30	18.81	0.294
2/	5.73	5.2 4	0	6.15	18.90	0.200
3/	5.76	5.19	0	5.93	18-90	0.279
4/					/*	
5/						
6/						
Sample App	bearance:	Turbid,	brawn,	no adour.	A	
		Wash Identification ar			So rainwa	the west
• • • • • • • • • • • • • • • • • • • •	•	1	into	- lajell .	1) presumed	with Colorer
			, -	970 C	/	
BORE OR L	OCATION	VID: MW10	ANALYSIS N	EEDED: Ammonia, Nitr	ate. Nitrite. FC. meta	als
TIME: 12	155	то / «	40 pm	VOLUME PURG		
		R QUALITY CHECK	01	TO LONIE TO TO.		
	pH	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)
	. Nº I	17.1	O	3.90	21.59	1.005
Check No.					22.0)	1.024
Check No. 1/	4.22	1.7.11	0	3.17	11.0)	
Check No. 1/ 2/		17.4	0	3.17	12.02	(was f
Check No. 1/ 2/ 3/	4.22	17.4	0	3.17	£2.0)_	[_ ~ ~]
Check No. 1/ 2/ 3/ 4/	4.22	17.4	0	3.17		
Check No. 1/ 2/ 3/ 4/ 5/	4.22	17.4	0	3.17	22.0 J-	
Check No. 1/ 2/ 3/ 4/ 5/ 6/	4.22	17.4 Teah.1.	O Palle bro	· 27 · · ·		
Check No. 1/ 2/ 3/ 4/ 5/ 6/ Sample App	<u>4.2</u> <u>4.21</u>		C Pale brand	why pood		
Check No. 1/ 2/ 3/ 4/ 5/ 6/ Sample App	<u>4.2</u> <u>4.21</u>	UZ-4 Terbiol Wash Identification ar		why pood		

鹵

>

Page ____ of ____

North Y

Date:

Appendix C

Quality Assurance Review and Laboratory Report Sheets One (1) water intralaboratory duplicate sample was submitted blind to the laboratory for analysis with the batch of samples. This represents a percentage of greater than 10%, in accordance with the frequency recommended for soil samples by the Australian Standard AS 4482.1 (Ref [5]) and RCA protocol.

One trip blank and one trip spike were submitted with the batch of samples by field personnel in accordance with the frequency recommended for soil samples by the Australian Standard AS 4482.1 (Ref [5]) and RCA protocol.

RCA omitted the field blank due to the low potential for cross contamination from the field conditions during the sampling process and the equipment wash due to the low potential for cross contamination from the designated sampling equipment.

Results, as shown further in this **Appendix**, indicate:

- All water analyses with RPD of less than 30% except for the phenanthrene and pyrene results. The duplicate results are higher than the primary sample (MW2) results, however the concentrations are less than 10times the PQL, the phenanthrene concentrations are less than 35% of the criterion and there is no criterion for pyrene. As such it is not considered that the uncertainty is significant.
- No detectable concentration within the trip blank, which is considered acceptable.
- Recoveries of 90 to 100% for the trip spike, which is considered acceptable.

ALS was chosen as the primary laboratory; ALS is NATA accredited and are experienced in the analytical requirements for potentially contaminated groundwater.

ALS undertook internal quality assurance testing. Results are contained within the laboratory report sheets, included in this **Appendix**. **Table 2** presents a summary of their review.

	•									
	Number Samples (including QA)	Laboratory Duplicates	Spikes	Laboratory Control Samples	Laboratory Blanks					
Requir	ement	10%	5%	One every batch	One every batch					
Water										
Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	6	0 (2)	0 (1)	1	1					
Mercury	6	0 (3)	1 (1)	2	2					
Ammonia	7	1 (1)	1 (0)	1	1					
Oxidisable Nitrogen	7	1 (2)	1 (1)	2	2					
	7	1 (1)	0 (1)	1	1					
TRH >C ₁₀ -C ₄₀	5	2 (0)	2 (0)	2	2					
BTEXN	7	1 (1)	0 (1)	1	1					
РАН	5	2 (0)	2 (0)	2	2					

Table 2	Internal	Quality	y Assurance	Review
	micinai	Quant	Assulative	I CEVIEW

Numbers in brackets refer the tests undertaken on samples not from this project but within the same laboratory batch.

Examination of the above table indicates that ALS have undertaken laboratory quality assurance testing in accordance with the ASC NEPM (Ref [4]).

With regards to the results of the quality assurance testing:

- Recoveries of surrogates were within acceptance criteria of 70-130%.
- Relative Percentage Differences for duplicates were below the acceptance criterion of 30% with the exception of:
 - Cadmium in anonymous sample. As the sample was not collected by RCA no comment can be made about the cause of poor RPD, however it is noted that the potential uncertainty does not necessarily imply uncertainty for reminder of samples in the analytical batch.
 - TRH >C₁₆-C₃₄ and phenanthrene in MW4. This sample is described as turbid and the cause of the high RPD is therefore considered to be sample heterogeneity. There is some uncertainty associated with the results. The primary sample has the highest TRH concentration and the uncertainty is considered to be conservative. Both the phenanthrene results are in excess of the guideline and the uncertainty is not considered significant in terms of long term monitoring.
- No Laboratory Blank result was detected above the practical quantification limit (PQL).
- Laboratory control spikes recoveries were within acceptance criteria of 70-130% with exception of:
 - The two (2) TRH >C₁₀-C₁₆ results which had recoveries of 66.7% and 69.7%. These are considered a minor non-compliance and not significant.
- Matrix spike recoveries were within the within acceptance criteria of 70-130% with the exception of:
 - Oxidisable nitrogen in MW3 for which a result could not be determined. The spiked concentration is several orders of magnitude less than the detected concentration such that the absence of a measurable spike recovery is not considered to represent uncertainty in the result.
 - Pyrene and TRH C₁₀-C₄₀ in MW4 for which a result could not be determined. The detected concentrations were several orders of magnitude above the spiked concentrations such that the absence of a measurable spike recovery is not considered to represent uncertainty in the result
- Holding times were within laboratory specified time frames.

						Groundwa
Quality Assurance Type	Primary	Intralaborat	ory Duplicate		Trip Blank	Trip Spike
Sample Identification	Primary PQL	MW2	DUP	1	TRIP BLANK	TRIP SPIKE
Date	PQL		5/2024]	17/05/2024	17/05/2024
Sample Descrip	otion		ale brown and no our.	RPD %	Water	Water
Sample Purp	ose	Monitoring			Quality Assurance	Quality Assurance
Sample Collecte	d by	RCA	- MH		Laboratory	Laboratory
Benzene, Toluene, Ethylbenz	ene Xvlene (
Benzene		<u>0.5</u>	0.5	0.0	<1	100%
Toluene	2	1	1	0.0	<2	90%
Ethylbenzene	2	1	1	0.0	<2	95%
meta- & para-Xylene	2	<u>1</u>	<u>1</u>	0.0	<2	95%
Ortho-xylene	2	1	1	0.0	<2	100%
Polycyclic Aromatic Hydroca			<u> </u>	0.0	~2	100 /0
Napthalene	5	2.5	2.5	0.0	<5	90%
Total Recoverable Hydrocarb	-	2.5	2.5	0.0	~5	90%
TRH C ₆ -C ₁₀	20	10	10	0.0	<20	
	-		<u>10</u>	0.0		
$TRH > C_{10} - C_{16}$	100	<u>50</u>	<u>50</u>	0.0		
TRH >C ₁₆ -C ₃₄	100	<u>50</u>	<u>50</u>	0.0		
TRH >C ₃₄ -C ₄₀	100	<u>50</u>	<u>50</u>	0.0		
Polycyclic Aromatic Hydroca		-		•		
Acenaphthene	0.1	<u>0.05</u>	<u>0.05</u>	0.0		
Acenaphthylene	0.1	<u>0.05</u>	<u>0.05</u>	0.0		
Anthracene	0.1	<u>0.05</u>	<u>0.05</u>	0.0		
Benz(a)anthracene	0.1	<u>0.05</u>	<u>0.05</u>	0.0		
Benzo(a) pyrene	0.05	<u>0.025</u>	0.025	0.0		
Benzo(b)&(j)fluoranthene	0.1	<u>0.05</u>	<u>0.05</u>	0.0		
Benzo(g,h,i)perylene	0.1	0.05	<u>0.05</u>	0.0		
Benzo(k)fluoranthene	0.1	0.05	<u>0.05</u>	0.0		
Chrysene	0.1	0.05	0.05	0.0		
Dibenz(a,h)anthracene	0.1	0.05	0.05	0.0		
Fluoranthene	0.1	0.3	0.4	28.6		
Fluorene	0.1	0.05	0.05	0.0		
Indeno(1,2,3-c,d)pyrene	0.1	0.05	<u>0.05</u>	0.0		
Naphthalene	0.1	0.05	0.05	0.0		
Phenanthrene	0.1	0.1	0.2	66.7		
Pyrene	0.1	0.2	0.3	40.0		
Metals					.	1
Arsenic	1	3	3	0.0		
Cadmium	0.1	0.05	0.05	0.0		
Chromium	1	0.5	0.5	0.0		
Copper	1	0.5	0.5	0.0		
Lead	1	0.5	0.5	0.0		
Mercury	0.1	0.05	0.05	0.0		
Nickel	1	22	22	0.0		
Zinc	5	34	38	11.1		
Nutrients			00			
Ammonia as N	10	1760	1680	4.7		
Nitrite + Nitrate as N	10	40	40	0.0		
	10	+0	+0	0.0		

Note all units in $\,\mu\text{g/L}$ except for trip spikes results in % recovery

PQL = Practical Quantitation Limit.

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results >30%

BOLD identifies where blanks > PQL

BOLD identifies where spikes outside of 70-130% recovery range

Client

Project

Site

Quote number

No. of samples received

No. of samples analysed

CERTIFICATE OF ANALYSIS Page Work Order : ES2416476 : 1 of 10 : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney Contact : MS FIONA BROOKER Contact : Danae Hambly Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : 92 HILL STREET **CARRINGTON NSW 2294** Telephone : +61 02 4902 9200 Telephone : +61-2-8784 8555 : 12513e **Date Samples Received** : 21-May-2024 15:43 Order number Date Analysis Commenced : -----: 21-May-2024 C-O-C number Issue Date : -----: 28-May-2024 15:27 Sampler : Muhammad

Julahow Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: -----

: 9

: 9

: EN/222

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP071: Poor duplicate precision for TPH C10-C36 due to sample matrix interferences.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP080: ES2416474-4 analysed water layer for Volatile analysis (has more than half oil on the top).
- EP075(SIM): Particular sample required dilution due to matrix interferences. LOR values have been adjusted accordingly. Poor Matrix Spike and surrogate not determined due to matrix interferences.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- EP071: Particular samples required dilution due to sample matrix . LOR values have been adjusted accordingly.
- EP132: Where reported, Total PAH reported as the sum of Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benz(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i)perylene.

Page : 3 of 10 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
		Samplii	ng date / time	21-May-2024 00:00				
Compound	CAS Number	LOR	Unit	ES2416476-001	ES2416476-002	ES2416476-003	ES2416476-004	ES2416476-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-								
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.003	0.002	0.003	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	0.003	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	0.003	0.022	0.007	0.006	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.004	
Zinc	7440-66-6	0.005	mg/L	0.012	0.034	0.014	0.020	
EG035F: Dissolved Mercury by FI	MS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EK055G: Ammonia as N by Discre	te Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.16	1.76	1.00	1.03	0.85
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.02	0.35	0.06	0.12
EK058G: Nitrate as N by Discrete	Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.92	0.02	2.30	0.04	43.7
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.92	0.04	2.65	0.10	43.8
EP075(SIM)B: Polynuclear Aromat	ic Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L				14800	
Acenaphthylene	208-96-8	1.0	μg/L				<4760	
Acenaphthene	83-32-9	1.0	µg/L				<4760	
Fluorene	86-73-7	1.0	µg/L				8070	
Phenanthrene	85-01-8	1.0	µg/L				16800	
Anthracene	120-12-7	1.0	µg/L				<4760	
Fluoranthene	206-44-0	1.0	µg/L				<4760	
Pyrene	129-00-0	1.0	µg/L				<4760	
Benz(a)anthracene	56-55-3	1.0	µg/L				<4760	

Page : 4 of 10 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
		Sampli	ng date / time	21-May-2024 00:00				
Compound	CAS Number	LOR	Unit	ES2416476-001	ES2416476-002	ES2416476-003	ES2416476-004	ES2416476-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy								
Chrysene	218-01-9	1.0	µg/L				<4760	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L				<4760	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L				<4760	
Benzo(a)pyrene	50-32-8	0.5	µg/L				<4760	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L				<4760	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L				<4760	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L				<4760	
Sum of polycyclic aromatic hydrocarbon	s	0.5	µg/L				39700	
Benzo(a)pyrene TEQ (zero)		0.5	µg/L				<2380	
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	2580	
C10 - C14 Fraction		50	µg/L	90	<50	<50	5800000	
C15 - C28 Fraction		100	µg/L	600	<100	<100	31200000	
C29 - C36 Fraction		50	µg/L	<50	<50	<50	126000	
C10 - C36 Fraction (sum)		50	µg/L	690	<50	<50	37100000	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	3860	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	µg/L	<20	<20	<20	3860	
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	16500000	
>C16 - C34 Fraction		100	μg/L	610	<100	<100	19300000	
>C34 - C40 Fraction		100	μg/L	<100	<100	<100	<14300	
>C10 - C40 Fraction (sum)		100	μg/L	610	<100	<100	35800000	
>C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	<100	16500000	
(F2)					 			
EP080: BTEXN Benzene	71-43-2	1	µg/L	<1	<1	<1	4	
					<2		4 <2	
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	

Page : 5 of 10 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
,		Sampli	ng date / time	21-May-2024 00:00				
Compound	CAS Number	LOR	Unit	ES2416476-001	ES2416476-002	ES2416476-003	ES2416476-004	ES2416476-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	
Total Xylenes		2	µg/L	<2	<2	<2	<2	
Sum of BTEX		1	µg/L	<1	<1	<1	4	
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	361	
EP132B: Polynuclear Aromatic Hyd	Irocarbons							
3-Methylcholanthrene	56-49-5	0.1	µg/L	<0.1	<0.1	<0.1		
2-Methylnaphthalene	91-57-6	0.1	µg/L	<0.1	<0.1	<0.1		
7.12-Dimethylbenz(a)anthracene	57-97-6	0.1	µg/L	<0.1	<0.1	<0.1		
Acenaphthene	83-32-9	0.1	µg/L	<0.1	<0.1	<0.1		
Acenaphthylene	208-96-8	0.1	µg/L	<0.1	<0.1	<0.1		
Anthracene	120-12-7	0.1	µg/L	<0.1	<0.1	<0.1		
Benz(a)anthracene	56-55-3	0.1	µg/L	<0.1	<0.1	<0.1		
Benzo(a)pyrene	50-32-8	0.05	µg/L	<0.05	<0.05	<0.05		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.1	µg/L	<0.1	<0.1	<0.1		
Benzo(e)pyrene	192-97-2	0.1	µg/L	<0.1	<0.1	<0.1		
Benzo(g.h.i)perylene	191-24-2	0.1	µg/L	<0.1	<0.1	<0.1		
Benzo(k)fluoranthene	207-08-9	0.1	µg/L	<0.1	<0.1	<0.1		
Chrysene	218-01-9	0.1	µg/L	<0.1	<0.1	<0.1		
Coronene	191-07-1	0.1	µg/L	<0.1	<0.1	<0.1		
Dibenz(a.h)anthracene	53-70-3	0.1	µg/L	<0.1	<0.1	<0.1		
Fluoranthene	206-44-0	0.1	μg/L	<0.1	0.3	0.2		
Fluorene	86-73-7	0.1	µg/L	<0.1	<0.1	<0.1		
Indeno(1.2.3.cd)pyrene	193-39-5	0.1	µg/L	<0.1	<0.1	<0.1		
Naphthalene	91-20-3	0.1	μg/L	<0.1	<0.1	<0.1		
Perylene	198-55-0	0.1	µg/L	<0.1	<0.1	<0.1		

Page : 6 of 10 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
		Sampli	ng date / time	21-May-2024 00:00				
Compound	CAS Number	LOR	Unit	ES2416476-001	ES2416476-002	ES2416476-003	ES2416476-004	ES2416476-005
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	rocarbons - Continued							
Phenanthrene	85-01-8	0.1	µg/L	<0.1	0.1	<0.1		
Pyrene	129-00-0	0.1	µg/L	<0.1	0.2	0.1		
Sum of PAHs		0.05	µg/L	<0.05				
^ Sum of PAHs		0.05	µg/L		0.6	0.3		
Benzo(a)pyrene TEQ (zero)		0.05	µg/L	<0.05	<0.05	<0.05		
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	1.0	%				Not Determined	
2-Chlorophenol-D4	93951-73-6	1.0	%				Not Determined	
2.4.6-Tribromophenol	118-79-6	1.0	%				Not Determined	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%				Not Determined	
Anthracene-d10	1719-06-8	1.0	%				Not Determined	
4-Terphenyl-d14	1718-51-0	1.0	%				Not Determined	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	104	102	103	88.2	
Toluene-D8	2037-26-5	2	%	114	115	112	109	
4-Bromofluorobenzene	460-00-4	2	%	101	104	102	113	
EP132T: Base/Neutral Extractable S	urrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	82.6	73.0	65.6		
Anthracene-d10	1719-06-8	0.1	%	85.7	75.1	70.5		
4-Terphenyl-d14	1718-51-0	0.1	%	84.1	77.0	75.8		

Page : 7 of 10 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	TRIP BLANK	TRIP SPIKE	QA	
		Sampli	ng date / time	21-May-2024 00:00	17-May-2024 00:00	17-May-2024 00:00	21-May-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2416476-006	ES2416476-007	ES2416476-008	ES2416476-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-N	IS							
Arsenic	7440-38-2	0.001	mg/L	0.002			0.003	
Cadmium	7440-43-9	0.0001	mg/L	0.0002			<0.0001	
Chromium	7440-47-3	0.001	mg/L	0.003			<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001			<0.001	
Nickel	7440-02-0	0.001	mg/L	0.125			0.022	
Lead	7439-92-1	0.001	mg/L	0.005			<0.001	
Zinc	7440-66-6	0.005	mg/L	0.231			0.038	
EG035F: Dissolved Mercury by FIM	S							
Mercury	7439-97-6	0.0001	mg/L	<0.0001			<0.0001	
EK055G: Ammonia as N by Discrete	e Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.22			1.68	
EK057G: Nitrite as N by Discrete A	nalyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01			<0.01	
EK058G: Nitrate as N by Discrete A	Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.05			0.04	
EK059G: Nitrite plus Nitrate as N (I	NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.05			0.04	
EP080/071: Total Petroleum Hydrod	arbons							
C6 - C9 Fraction		20	µg/L		<20		<20	
C10 - C14 Fraction		50	µg/L				<50	
C15 - C28 Fraction		100	µg/L				<100	
C29 - C36 Fraction		50	µg/L				<50	
^ C10 - C36 Fraction (sum)		50	µg/L				<50	
EP080/071: Total Recoverable Hydr	ocarbons - NEPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	20	µg/L		<20		<20	
 C6 - C10 Fraction minus BTEX (F1) 	C6_C10-BTEX	20	µg/L		<20		<20	
>C10 - C16 Fraction		100	µg/L				<100	

Page : 8 of 10 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	TRIP BLANK	TRIP SPIKE	QA	
		Samplii	ng date / time	21-May-2024 00:00	17-May-2024 00:00	17-May-2024 00:00	21-May-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2416476-006	ES2416476-007	ES2416476-008	ES2416476-009	
				Result	Result	Result	Result	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns - Continued		·			
>C16 - C34 Fraction		100	µg/L				<100	
>C34 - C40 Fraction		100	µg/L				<100	
^ >C10 - C40 Fraction (sum)		100	µg/L				<100	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L				<100	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L		<1	20	<1	
Toluene	108-88-3	2	µg/L		<2	18	<2	
Ethylbenzene	100-41-4	2	µg/L		<2	19	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L		<2	19	<2	
ortho-Xylene	95-47-6	2	µg/L		<2	20	<2	
^ Total Xylenes		2	µg/L		<2	39	<2	
^ Sum of BTEX		1	µg/L		<1	96	<1	
Naphthalene	91-20-3	5	µg/L		<5	18	<5	
EP132B: Polynuclear Aromatic Hydrod	arbons							
3-Methylcholanthrene	56-49-5	0.1	µg/L				<0.1	
2-Methylnaphthalene	91-57-6	0.1	µg/L				<0.1	
7.12-Dimethylbenz(a)anthracene	57-97-6	0.1	µg/L				<0.1	
Acenaphthene	83-32-9	0.1	µg/L				<0.1	
Acenaphthylene	208-96-8	0.1	µg/L				<0.1	
Anthracene	120-12-7	0.1	µg/L				<0.1	
Benz(a)anthracene	56-55-3	0.1	µg/L				<0.1	
Benzo(a)pyrene	50-32-8	0.05	μg/L				<0.05	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.1	μg/L				<0.1	
Benzo(e)pyrene	192-97-2	0.1	μg/L				<0.1	
Benzo(g.h.i)perylene	191-24-2	0.1	μg/L				<0.1	
Benzo(k)fluoranthene	207-08-9	0.1	µg/L				<0.1	

Page : 9 of 10 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

ub-Matrix: WATER Matrix: WATER)			Sample ID	MW10	TRIP BLANK	TRIP SPIKE	QA	
·		Sampli	ng date / time	21-May-2024 00:00	17-May-2024 00:00	17-May-2024 00:00	21-May-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2416476-006	ES2416476-007	ES2416476-008	ES2416476-009	
				Result	Result	Result	Result	
EP132B: Polynuclear Aromatic Hydr	rocarbons - Continued							
Chrysene	218-01-9	0.1	µg/L				<0.1	
Coronene	191-07-1	0.1	µg/L				<0.1	
Dibenz(a.h)anthracene	53-70-3	0.1	µg/L				<0.1	
Fluoranthene	206-44-0	0.1	µg/L				0.4	
Fluorene	86-73-7	0.1	µg/L				<0.1	
Indeno(1.2.3.cd)pyrene	193-39-5	0.1	µg/L				<0.1	
Naphthalene	91-20-3	0.1	µg/L				<0.1	
Perylene	198-55-0	0.1	µg/L				<0.1	
Phenanthrene	85-01-8	0.1	µg/L				0.2	
Pyrene	129-00-0	0.1	µg/L				0.3	
Sum of PAHs		0.05	µg/L				0.9	
Benzo(a)pyrene TEQ (zero)		0.05	µg/L				<0.05	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%		83.5	98.1	99.6	
Toluene-D8	2037-26-5	2	%		92.8	104	109	
4-Bromofluorobenzene	460-00-4	2	%		82.1	106	99.0	
EP132T: Base/Neutral Extractable S	urrogates							·
2-Fluorobiphenyl	321-60-8	0.1	%				76.6	
Anthracene-d10	1719-06-8	0.1	%				82.8	
4-Terphenyl-d14	1718-51-0	0.1	%				82.4	

Surrogate Control Limits

Sub-Matrix: WATER	Г	Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surro	gates				
Phenol-d6	13127-88-3	10	44		
2-Chlorophenol-D4	93951-73-6	14	94		
2.4.6-Tribromophenol	118-79-6	17	125		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	20	104		
Anthracene-d10	1719-06-8	27	113		
4-Terphenyl-d14	1718-51-0	32	112		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	72	143		
Toluene-D8	2037-26-5	75	131		
4-Bromofluorobenzene	460-00-4	73	137		
EP132T: Base/Neutral Extractable Surrog	ates				
2-Fluorobiphenyl	321-60-8	43	135		
Anthracene-d10	1719-06-8	48	138		
4-Terphenyl-d14	1718-51-0	48	144		

QUALITY CONTROL REPORT

Work Order	: ES2416476	Page	: 1 of 11	
Client	: ROBERT CARR & ASSOCIATES P/L	Laboratory	: Environmental Division Sydney	
Contact	: MS FIONA BROOKER	Contact	: Danae Hambly	
Address	: 92 HILL STREET CARRINGTON NSW 2294	Address	: 277-289 Woodpark Road Smithfie	eld NSW Australia 2164
Telephone	: +61 02 4902 9200	Telephone	: +61-2-8784 8555	
Project	: 12513e	Date Samples Received	: 21-May-2024	AMILIU.
Order number	:	Date Analysis Commenced	: 21-May-2024	
C-O-C number	:	Issue Date	: 28-May-2024	
Sampler	: Muhammad			ac-MRA NAIA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 9			Accredited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
G020F: Dissolved	Metals by ICP-MS (QC	C Lot: 5808048)							
ES2416357-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0002	<0.0001	87.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.005	0.005	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.012	0.013	0.0	No Limit
EW2402355-009	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.010	0.010	0.0	No Limit
G035F: Dissolved	Mercury by FIMS (QC	Lot: 5808047)					i i		
EM2408193-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2415927-004	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.1 µg/L	<0.0001	0.0	No Limit
G035F: Dissolved I	Mercury by FIMS (QC	Lot: 5808051)				·			·
EW2402371-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit

Page	: 3 of 11
Work Order	: ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report	1	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK055G: Ammonia	as N by Discrete An	alyser (QC Lot: 5816080) - continued							
ES2416639-003	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	8.80	8.69	1.3	0% - 20%
ES2416476-003	MW3	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.00	0.97	3.4	0% - 20%
EK057G: Nitrite as	N by Discrete Analy	ser (QC Lot: 5806003)				'			
ES2416476-006	MW10	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2416421-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 5816079)							
ES2415927-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.09	0.09	0.0	No Limit
ES2416472-007	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.44	0.42	3.6	0% - 20%
EK059G: Nitrite plu	s Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 5816081)							
ES2416476-003	MW3	EK059G: Nitrite + Nitrate as N		0.01	mg/L	2.65	2.70	1.9	0% - 20%
EP075(SIM)B: Polyr	uclear Aromatic Hy	drocarbons (QC Lot: 5806638)							
ES2416476-004	MW4	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5 (4760)*	μg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Naphthalene	91-20-3	1 (4760)*	µg/L	14800	16700	12.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	1 (4760)*	µg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	1 (4760)*	µg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	1 (4760)*	µg/L	8070	8510	5.3	No Limit
		EP075(SIM): Phenanthrene	85-01-8	1 (4760)*	µg/L	16800	23600	33.7	No Limit
		EP075(SIM): Anthracene	120-12-7	1 (4760)*	µg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	1 (4760)*	µg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	1 (4760)*	μg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	1 (4760)*	μg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	1 (4760)*	µg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1 (4760)*	µg/L	<4760	<4760	0.0	No Limit
			205-82-3	4 (4700)*		.4700	.4700	0.0	No. 1 Section
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	. ,	µg/L	<4760	<4760	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5 53-70-3	. ,	µg/L	<4760 <4760	<4760 <4760	0.0	No Limit No Limit
		EP075(SIM): Dibenz(a.h)anthracene	191-24-2	. ,	μg/L μg/L	<4760	<4760	0.0	No Limit
	fueles un Lludue este	EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1 (4700)	µg/L	~4700	<4700	0.0	NO LITII
ES2416476-001	MW1			100	a /l	600	600	0.0	No Limit
ES2410476-001		EP071: C15 - C28 Fraction		100 50	µg/L	90	600 90	0.0	No Limit No Limit
		EP071: C10 - C14 Fraction		50	μg/L μg/L	<50	<50	0.0	No Limit
ED000/074. Total Da		EP071: C29 - C36 Fraction		50	µy/∟	~50	-50	0.0	
EP080/071: Total Pe ES2416476-004	MW4	ons (QC Lot: 5806639)		100 (14300)*	uc/l	31200000	# 20800000	39.8	0% - 20%
LO24104/0-004	111444	EP071: C15 - C28 Fraction		50 (14300)*	µg/L	5800000	# 7310000	23.0	0% - 20%
		EP071: C10 - C14 Fraction		50 (14300) 50 (14300)*	μg/L μg/L	126000	52100	83.4	No Limit
		EP071: C29 - C36 Fraction	 	30 (14300)	µy/∟	120000	52100	03.4	

Page	: 4 of 11
Work Order	: ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	troleum Hydrocarbons (Q	C Lot: 5808069) - continued							
ES2416416-018	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
ES2416476-002	MW2	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons -	NEPM 2013 Fractions (QC Lot: 5806633)							
ES2416476-001	MW1	EP071: >C10 - C16 Fraction		100	µg/L	<100	<100	0.0	No Limit
		EP071: >C16 - C34 Fraction		100	µg/L	610	610	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	µg/L	<100	<100	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons -	NEPM 2013 Fractions (QC Lot: 5806639)				'			
ES2416476-004	MW4	EP071: >C10 - C16 Fraction		100 (14300)*	µg/L	16500000	15200000	8.7	0% - 20%
		EP071: >C16 - C34 Fraction		100 (14300)*	µg/L	19300000	# 13300000	36.6	0% - 20%
		EP071: >C34 - C40 Fraction		100 (14300)*	µg/L	<14300	<14300	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons -	NEPM 2013 Fractions (QC Lot: 5808069)				·			
ES2416416-018	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit
ES2416476-002	MW2	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 5808069)								
ES2416416-018	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit
ES2416476-002	MW2	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: ortho-Xylene	106-42-3 95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
EP132B: Polynuclea	r Aromatic Hydrocarbons		01200	Ű	₩9 [,] ⊏			0.0	
ES2416476-001	MW1	EP132: Benzo(a)pyrene	50-32-8	0.05	µg/L	<0.05	< 0.05	0.0	No Limit
		EP132: 3-Methylcholanthrene	56-49-5	0.00	μg/L	<0.03	<0.03	0.0	No Limit
		EP132: 2-Methylnaphthalene	91-57-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Acenaphthene	83-32-9	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Acenaphthylene	208-96-8	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Anthracene	120-12-7	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benz(a)anthracene	56-55-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit

Page	: 5 of 11
Work Order	: ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report	1	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP132B: Polynuclea	r Aromatic Hydrocarbon	s (QC Lot: 5806601) - continued							
ES2416476-001	MW1	EP132: Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benzo(e)pyrene	192-97-2	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benzo(g.h.i)perylene	191-24-2	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benzo(k)fluoranthene	207-08-9	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Chrysene	218-01-9	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Coronene	191-07-1	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Dibenz(a.h)anthracene	53-70-3	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Fluoranthene	206-44-0	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Fluorene	86-73-7	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Indeno(1.2.3.cd)pyrene	193-39-5	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Naphthalene	91-20-3	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Perylene	198-55-0	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Phenanthrene	85-01-8	0.1	µg/L	<0.1	<0.1	0.0	No Limit
		EP132: Pyrene	129-00-0	0.1	µg/L	<0.1	<0.1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 5808048)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.2	85.0	114	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	90.0	84.0	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	88.0	85.0	111	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	87.7	81.0	111	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	88.0	83.0	111	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	87.4	82.0	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	90.3	81.0	117	
EG035F: Dissolved Mercury by FIMS (QCLot: 5808047)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	103	83.0	105	
EG035F: Dissolved Mercury by FIMS (QCLot: 5808051)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	99.4	83.0	105	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5816	080)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	102	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 580600	3)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	101	82.0	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys	er (OCI of: 58	16079)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	92.7	91.0	113	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys	or (OCL of: 58	(16091)			Ŭ	02			
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	94.2	91.0	113	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot:	5906629)					01.2		110	
EP075(SIM)B. Polynuclear Aromatic Hydrocarbons (QCL01.	91-20-3	1	μg/L	<1.0	5 µg/L	75.6	50.0	94.0	
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	77.3	63.6	114	
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	74.1	62.2	114	
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	73.3	63.9	115	
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 μg/L	86.8	62.6	115	
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	85.9	64.3	116	
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	90.2	63.6	118	
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	93.6	63.1	118	
EP075(SIM): Epicie EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	86.3	64.1	110	
	218-01-9	1	μg/L	<1.0	5 μg/L		62.5		
EP075(SIM): Chrysene	210-01-9	I	µy/∟	NI.U	o µg/∟	96.9	02.0	116	

Page	: 7 of 11
Work Order	ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	ort	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 5806638) - co	ntinued							
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	81.0	61.7	119	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	99.5	63.0	115	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	91.2	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	84.5	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	90.6	61.2	117	
P075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	92.3	59.1	118	
P080/071: Total Petroleum Hydrocarbons (QCLot: 580	06633)								
P071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	65.0	53.7	97.0	
P071: C15 - C28 Fraction		100	µg/L	<100	600 µg/L	65.9	63.3	107	
P071: C29 - C36 Fraction		50	µg/L	<50	400 µg/L	92.6	58.3	120	
P080/071: Total Petroleum Hydrocarbons (QCLot: 580)6639)								
P071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	79.0	53.7	97.0	
P071: C15 - C28 Fraction		100	µg/L	<100	600 µg/L	103	63.3	107	
P071: C29 - C36 Fraction		50	μg/L	<50	400 µg/L	99.5	58.3	120	
P080/071: Total Petroleum Hydrocarbons (QCLot: 58)	18069)								
P080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	79.2	75.0	127	
P080/071: Total Recoverable Hydrocarbons - NEPM 20	13 Eractions (OCL	ot: 5806633)							
P071: >C10 - C16 Fraction		100	μg/L	<100	500 µg/L	66.7	53.9	95.5	
P071: >C16 - C34 Fraction		100	µg/L	<100	700 µg/L	75.1	57.8	110	
P071: >C34 - C40 Fraction		100	μg/L	<100	300 µg/L	81.1	50.5	115	
	12 Exections (OCL		1×3·-		000 µg	01.1		115	
EP080/071: Total Recoverable Hydrocarbons - NEPM 20 EP071: >C10 - C16 Fraction	13 Fractions (QCLC	100	µg/L	<100	500 µg/L	69.7	53.9	95.5	
P071: >C10 - C10 Flaction		100	μg/L	<100	700 μg/L		57.8		
P071: >C16 - C34 Flaction		100	μg/L	<100	300 μg/L	102	50.5	110	
			μg/L	<100	500 µg/∟	95.1	50.5	115	
P080/071: Total Recoverable Hydrocarbons - NEPM 20	013 Fractions (QCLo C6 C10	ot: 5808069) 20		<20	210 ug/l		75.0		
P080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 μg/L	78.7	75.0	127	
P080: BTEXN (QCLot: 5808069)					10 1				
P080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	97.3	68.3	119	
P080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	98.4	73.5	120	
P080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	97.9	73.8	122	
P080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	100	73.0	122	
	106-42-3	0			40		70.4		
P080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	102	76.4	123	
P080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	93.7	75.5	124	

Page : 8 of 11 Work Order : ES2416476 Client : ROBERT CARR & ASSOCIATES P/L Project : 12513e

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP132B: Polynuclear Aromatic Hydrocarbons(QCLot: 5806601)								
EP132: 3-Methylcholanthrene	56-49-5	0.1	µg/L	<0.1	2 µg/L	92.3	60.0	120	
EP132: 2-Methylnaphthalene	91-57-6	0.1	µg/L	<0.1	2 µg/L	73.9	59.0	123	
EP132: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.1	µg/L	<0.1	2 µg/L	87.9	36.0	144	
EP132: Acenaphthene	83-32-9	0.1	µg/L	<0.1	2 µg/L	76.1	64.0	122	
EP132: Acenaphthylene	208-96-8	0.1	µg/L	<0.1	2 µg/L	77.6	64.0	126	
EP132: Anthracene	120-12-7	0.1	µg/L	<0.1	2 µg/L	82.8	65.0	127	
EP132: Benz(a)anthracene	56-55-3	0.1	µg/L	<0.1	2 µg/L	87.3	64.0	130	
EP132: Benzo(a)pyrene	50-32-8	0.05	µg/L	<0.05	2 µg/L	85.0	64.0	126	
EP132: Benzo(b+j)fluoranthene	205-99-2	0.1	µg/L	<0.1	2 µg/L	84.9	62.0	126	
	205-82-3								
EP132: Benzo(e)pyrene	192-97-2	0.1	µg/L	<0.1	2 µg/L	85.0	62.0	126	
EP132: Benzo(g.h.i)perylene	191-24-2	0.1	µg/L	<0.1	2 µg/L	84.7	56.0	126	
EP132: Benzo(k)fluoranthene	207-08-9	0.1	µg/L	<0.1	2 µg/L	82.8	68.0	130	
EP132: Chrysene	218-01-9	0.1	µg/L	<0.1	2 µg/L	84.9	66.0	130	
EP132: Coronene	191-07-1	0.1	µg/L	<0.1	2 µg/L	85.3	35.0	133	
EP132: Dibenz(a.h)anthracene	53-70-3	0.1	µg/L	<0.1	2 µg/L	83.3	58.0	128	
EP132: Fluoranthene	206-44-0	0.1	µg/L	<0.1	2 µg/L	85.5	65.0	127	
EP132: Fluorene	86-73-7	0.1	µg/L	<0.1	2 µg/L	79.2	64.0	124	
EP132: Indeno(1.2.3.cd)pyrene	193-39-5	0.1	µg/L	<0.1	2 µg/L	84.6	57.0	127	
EP132: Naphthalene	91-20-3	0.1	µg/L	<0.1	2 µg/L	70.2	54.0	128	
EP132: Perylene	198-55-0	0.1	µg/L	<0.1	2 µg/L	84.4	66.0	130	
EP132: Phenanthrene	85-01-8	0.1	µg/L	<0.1	2 µg/L	81.1	65.0	129	
EP132: Pyrene	129-00-0	0.1	μg/L	<0.1	2 µg/L	82.2	66.0	128	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5808048)						
ES2416357-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	106	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	106	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	100	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	102	70.0	130

Page	: 9 of 11
Work Order	: ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID CAS Number Sample ID Concentration MS Method: Compound Low High EG020F: Dissolved Metals by ICP-MS (QCLot: 5808048) - continued ES2416357-002 Anonymous 7439-92-1 102 70.0 130 EG020A-F: Lead 1 mg/L 7440-02-0 101 130 1 mg/L 70.0 EG020A-F: Nickel 7440-66-6 104 70.0 130 1 mg/L EG020A-F: Zinc EG035F: Dissolved Mercury by FIMS (QCLot: 5808047) EM2408193-001 Anonymous 7439-97-6 0.01 mg/L 84.4 70.0 130 EG035F: Mercury EG035F: Dissolved Mercury by FIMS (QCLot: 5808051) ES2416476-009 QA 7439-97-6 0.01 mg/L 73.1 70.0 130 EG035F: Mercury EK055G: Ammonia as N by Discrete Analyser (QCLot: 5816080) ES2416476-003 MW3 7664-41-7 1 mg/L 77.3 70.0 130 EK055G: Ammonia as N EK057G: Nitrite as N by Discrete Analyser (QCLot: 5806003) ES2416421-001 Anonymous 14797-65-0 0.5 mg/L 105 70.0 130 EK057G: Nitrite as N EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 5816079) ES2415927-001 97.9 70.0 130 Anonymous EK059G: Nitrite + Nitrate as N 0.5 mg/L EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 5816081) ES2416476-003 MW3 0.5 mg/L 70.0 130 EK059G: Nitrite + Nitrate as N ----# Not Determined EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 5806638) ES2416476-004 MW4 83-32-9 #0.0 70.0 130 EP075(SIM): Acenaphthene 20 µg/L 129-00-0 70.0 130 20 µg/L EP075(SIM): Pyrene # Not Determined EP080/071: Total Petroleum Hydrocarbons (QCLot: 5806633) ES2416476-001 MW1 200 µg/L 99.3 70.0 130 EP071: C10 - C14 Fraction ----250 µg/L 119 71.0 130 EP071: C15 - C28 Fraction ----107 67.0 130 200 µg/L EP071: C29 - C36 Fraction ----EP080/071: Total Petroleum Hydrocarbons (QCLot: 5806639) ES2416476-004 MW4 200 µg/L 70.0 130 EP071: C10 - C14 Fraction ----# Not Determined 71.0 250 µg/L 130 EP071: C15 - C28 Fraction # Not Determined 200 µg/L 67.0 130 EP071: C29 - C36 Fraction ____ # Not Determined EP080/071: Total Petroleum Hydrocarbons (QCLot: 5808069) ES2416416-018 325 µg/L 91.6 70.0 130 Anonymous EP080: C6 - C9 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5806633) ES2416476-001 MW1 EP071: >C10 - C16 Fraction 250 µg/L 86.9 70.0 130 -----

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number MS Concentration Low High Method: Compound EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5806633) - continued ES2416476-001 MW1 EP071: >C16 - C34 Fraction 350 µg/L 100 75.0 130 ____ 150 µg/L 72.2 67.0 130 EP071: >C34 - C40 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5806639) MW4 ES2416476-004 250 µg/L 70.0 130 EP071: >C10 - C16 Fraction # Not ----Determined 350 µg/L 75.0 130 EP071: >C16 - C34 Fraction # Not ____ Determined EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5808069) ES2416416-018 Anonymous C6 C10 89.5 EP080: C6 - C10 Fraction 375 ua/L 70.0 130 EP080: BTEXN (QCLot: 5808069) ES2416416-018 71-43-2 100 70.0 130 Anonymous 25 ua/L EP080: Benzene 108-88-3 25 µg/L 100 70.0 130 EP080: Toluene 100-41-4 25 µg/L 104 70.0 130 EP080: Ethylbenzene 108-38-3 25 µg/L 104 70.0 130 EP080: meta- & para-Xylene 106-42-3 95-47-6 107 70.0 130 EP080: ortho-Xylene 25 µg/L 130 91-20-3 25 µg/L 113 70.0 EP080: Naphthalene EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 5806601) ES2416476-001 MW1 56-49-5 59.0 115 EP132: 3-Methylcholanthrene 2 µg/L 99.1 91-57-6 $2 \mu q/L$ 78.3 46.0 120 EP132: 2-Methylnaphthalene 57-97-6 2 µg/L 129 21.0 135 EP132: 7.12-Dimethylbenz(a)anthracene 83-32-9 62.0 114 EP132: Acenaphthene 2 µg/L 80.2 208-96-8 2 µg/L 83.5 61.0 119 EP132: Acenaphthylene 120-12-7 68.0 EP132: Anthracene 2 µg/L 82.0 116 56-55-3 84.8 67.0 122 2 µg/L EP132: Benz(a)anthracene 50-32-8 2 µg/L 82.1 72.0 114 EP132: Benzo(a)pyrene 82.3 69.0 119 2 µg/L EP132: Benzo(b+j)fluoranthene 205-99-2 205-82-3 192-97-2 2 µg/L 81.2 71.0 119 EP132: Benzo(e)pyrene 191-24-2 81.8 49.0 133 EP132: Benzo(g.h.i)perylene 2 µg/L 207-08-9 78.7 71.0 124 EP132: Benzo(k)fluoranthene 2 µg/L 218-01-9 82.2 70.0 118 EP132: Chrysene 2 µg/L 191-07-1 $2 \mu q/L$ 94.4 29.0 138 EP132: Coronene 53-70-3 2 µg/L 82.0 60.0 122 EP132: Dibenz(a.h)anthracene 206-44-0 65.0 121 2 µg/L 78.2 EP132: Fluoranthene 86-73-7 118 2 µg/L 82.6 63.0 EP132: Fluorene 193-39-5 2 µg/L 83.1 57.0 123 EP132: Indeno(1.2.3.cd)pyrene 91-20-3 74.6 53.0 115 2 µg/L EP132: Naphthalene

Page	: 11 of 11
Work Order	: ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Sub-Matrix: WATER	iub-Matrix: WATER					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EP132B: Polynucle	ar Aromatic Hydrocarbons (QCLot: 5806601) - continu	ed									
ES2416476-001	MW1	EP132: Perylene	198-55-0	2 µg/L	80.8	71.0	118				
		EP132: Phenanthrene	85-01-8	2 µg/L	80.1	67.0	120				
		EP132: Pyrene	129-00-0	2 µg/L	77.4	70.0	117				

	QA/QC Compliance Assessment to assist with Quality Review								
Work Order	: ES2416476	Page	: 1 of 8						
Client	: ROBERT CARR & ASSOCIATES P/L	Laboratory	: Environmental Division Sydney						
Contact	: MS FIONA BROOKER	Telephone	: +61-2-8784 8555						
Project	: 12513e	Date Samples Received	: 21-May-2024						
Site	:	Issue Date	: 28-May-2024						
Sampler	: Muhammad	No. of samples received	: 9						
Order number	:	No. of samples analysed	: 9						

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, where applicable to the methodology, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: V	VATER
-----------	-------

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EP080/071: Total Petroleum Hydrocarbons	ES2416476004	MW4	C10 - C14 Fraction		23.0 %	0% - 20%	RPD exceeds LOR based limits
EP080/071: Total Petroleum Hydrocarbons	ES2416476004	MW4	C15 - C28 Fraction		39.8 %	0% - 20%	RPD exceeds LOR based limits
EP080/071: Total Recoverable Hydrocarbons - NEPM	2 ES2416476004	MW4	>C16 - C34 Fraction		36.6 %	0% - 20%	RPD exceeds LOR based limits
Matrix Spike (MS) Recoveries							
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	vr ES2416476003	MW3	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2416476004	MW4	Acenaphthene	83-32-9	0.0 %	70.0-130%	Recovery less than lower data quality
							objective
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2416476004	MW4	Pyrene	129-00-0	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2416476004	MW4	C10 - C14 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2416476004	MW4	C15 - C28 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2416476004	MW4	C29 - C36 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM	2 ES2416476004	MW4	>C10 - C16 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM	2 ES2416476004	MW4	>C16 - C34 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: × = Holding time breach ; ✓ = Within holding time						n holding time.	
Method	Sample Date	nple Date Extraction / Preparation Analysis					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page	: 3 of 8
Work Order	: ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)								
MW1,	MW2,	21-May-2024				22-May-2024	17-Nov-2024	✓
MW3,	MW4,							
MW10,	QA							
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)								
MW1,	MW2,	21-May-2024				24-May-2024	18-Jun-2024	✓
MW3,	MW4,							
MW10,	QA							
EK055G: Ammonia as N by Discrete Analyser						-		
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW1,	MW2,	21-May-2024				27-May-2024	18-Jun-2024	✓
MW3,	MW4,							
MW6,	MW10,							
QA								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
MW1,	MW2,	21-May-2024				21-May-2024	23-May-2024	✓
MW3,	MW4,							
MW6,	MW10,							
QA								
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
MW1,	MW2,	21-May-2024				27-May-2024	18-Jun-2024	✓
MW3,	MW4,							
MW6,	MW10,							
QA								
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM))								
MW4		21-May-2024	23-May-2024	28-May-2024	<i>✓</i>	25-May-2024	02-Jul-2024	\checkmark

Matrix: WATER Evaluation: * = Holding time breach ; \checkmark = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Due for extraction Evaluation Date extracted Date analysed Due for analysis Evaluation EP080/071: Total Petroleum Hydrocarbons Amber Glass Bottle - Unpreserved (EP071) 21-May-2024 28-May-2024 01-Jul-2024 MW1 QA 22-May-2024 1 23-May-2024 1 Amber Glass Bottle - Unpreserved (EP071) 28-May-2024 21-May-2024 22-May-2024 1 25-May-2024 01-Jul-2024 MW2. MW3 1 Amber Glass Bottle - Unpreserved (EP071) 28-May-2024 02-Jul-2024 21-May-2024 23-May-2024 28-May-2024 MW4 1 \checkmark Amber VOC Vial - Sulfuric Acid (EP080) TRIP BLANK 17-May-2024 23-May-2024 31-May-2024 1 24-May-2024 31-May-2024 ✓ Amber VOC Vial - Sulfuric Acid (EP080) 04-Jun-2024 04-Jun-2024 MW1. MW2. 21-May-2024 23-May-2024 1 24-May-2024 \checkmark QA MW3 Amber VOC Vial - Sulfuric Acid (EP080) 04-Jun-2024 21-May-2024 23-May-2024 27-May-2024 04-Jun-2024 MW4 1 1 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Amber Glass Bottle - Unpreserved (EP071) 21-May-2024 22-May-2024 28-May-2024 1 23-May-2024 01-Jul-2024 MW1 QA \checkmark Amber Glass Bottle - Unpreserved (EP071) MW3 21-May-2024 22-May-2024 28-May-2024 1 25-May-2024 01-Jul-2024 MW2. ✓ Amber Glass Bottle - Unpreserved (EP071) 21-May-2024 23-May-2024 28-May-2024 1 28-May-2024 02-Jul-2024 MW4 1 Amber VOC Vial - Sulfuric Acid (EP080) TRIP BLANK 17-May-2024 23-May-2024 31-May-2024 1 24-May-2024 31-May-2024 \checkmark Amber VOC Vial - Sulfuric Acid (EP080) MW1. MW2. 21-May-2024 23-May-2024 04-Jun-2024 1 24-May-2024 04-Jun-2024 \checkmark MW3 QA Amber VOC Vial - Sulfuric Acid (EP080) 21-May-2024 04-Jun-2024 27-May-2024 04-Jun-2024 MW4 23-May-2024 1 1 EP080: BTEXN Amber VOC Vial - Sulfuric Acid (EP080) 17-May-2024 31-May-2024 24-May-2024 TRIP BLANK 23-May-2024 1 31-May-2024 \checkmark Amber VOC Vial - Sulfuric Acid (EP080) TRIP SPIKE 17-May-2024 23-May-2024 31-May-2024 \checkmark 27-May-2024 31-May-2024 ✓ Amber VOC Vial - Sulfuric Acid (EP080) \checkmark MW1, MW2, 21-May-2024 23-May-2024 04-Jun-2024 1 24-May-2024 04-Jun-2024 MW3 QA Amber VOC Vial - Sulfuric Acid (EP080) 21-May-2024 23-May-2024 04-Jun-2024 1 27-May-2024 04-Jun-2024 MW4 \checkmark EP132B: Polynuclear Aromatic Hydrocarbons Amber Glass Bottle - Unpreserved (EP132) 28-May-2024 01-Jul-2024 MW1 21-May-2024 22-May-2024 1 23-May-2024 \checkmark Amber Glass Bottle - Unpreserved (EP132) MW2, MW3, 21-May-2024 22-May-2024 28-May-2024 1 24-May-2024 01-Jul-2024 \checkmark QA

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	3	25	12.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	14	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
Vitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	25	12.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	11	18.18	10.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	2	5	40.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	20	10.00	10.00	- -	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							·
Ammonia as N by Discrete analyser	EK055G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	25	8.00	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	14	7.14	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	25	8.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
itrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00		NEPM 2013 B3 & ALS QC Standard
AH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00		NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00		NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	2	5	40.00	5.00		NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
/lethod Blanks (MB)						_	
mmonia as N by Discrete analyser	EK055G	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	25	8.00	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	25	8.00	5.00		NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00		NEPM 2013 B3 & ALS QC Standard
AH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00		NEPM 2013 B3 & ALS QC Standard
semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00		NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	2	5	40.00	5.00		NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
/atrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	25	8.00	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
Vitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	25	8.00	5.00	 	NEPM 2013 B3 & ALS QC Standard
Vitrite as N by Discrete Analyser	EK059G	1	11	9.09	5.00	 	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00		NEPM 2013 B3 & ALS QC Standard

Page	: 6 of 8
Work Order	: ES2416476
Client	: ROBERT CARR & ASSOCIATES P/L
Project	: 12513e

Matrix: WATER				Evaluation	n: 🗴 = Quality Co	ontrol frequency n	ot within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type	Co	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	WATER	In house: Referenced to USEPA 3640 (GPC Cleanup), 8270 GCMS Capiliary column, SIM mode. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Sep. Funnel Extraction /Acetylation of Phenolic Compounds	ORG14-AC	WATER	In house: Referenced to USEPA 3510 (Extraction) / In-house (Acetylation): A 1L sample is extracted into dichloromethane and concentrated to 1 mL with echange into cyclohexane. Phenolic compounds are reacted with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

BR.M. BR.A. Australia (ROBECAR) TURNATION DRECORDENENTS :	ALS	CHAIN OF CUSTODY	Ph: 08 635 CIBRISBAN Ph: 07 324 y: DOLADST	CIGLADSTONE 46 Callemondah Drive Clinton QLD 4880		e@algiptet.com Ph: 02 4014 2500 E: samples.newcestla@alagiobal.com Ph: 02 4014 2500 E: samples.newcestla@alagiobal.com el Stafford GLD 4053 CIMELBOURNE 2-4 Westall Road Springrala VIC 3171 CINOWRA 413 Gearry Place North Nowa NSW 2541 shifsbane@alagiobal.com Ph: 03 6549 9600 E: samples.newlesume@alagiobal.com Ph: 02 4014 2500 E: newr@alagiobal.com valab Drive Clinton OLD 4880 CMUDOEE 27 Syringvada Mutdoee NSW 2640 Ph: 02 4014 2500 E: newr@alagiobal.com				piobal.com N 2541	2304 USYDNEY 277-269 Woodpark Road Smithfield NSW 2164 Ph: 02 3784 3855 E: samples.aydney@pilojal.com UTOWNSVILLE 14-15 Deama Court Bohle QLD 4819 Ph: 07 4756 0690 E: townsvite environmentat@atgobar.com UWOLLCNIGONG 99 Kenny Street Wolforsgong NSW 2500				
All Hold Process Theo Operated Theo		A Australia (ROBCAR)	,	TURNARO	UND REQUIREMENTS :					5 E: samples per	h@alaglobat c	Participation	1	² h: 02 4225 31	25 E: portkembla@alsglobal.com
ALSO OUTPOUND OTHER AND TASK OCCURE NUMBER (Circle) OTHER AND TASK OCCURE NUMBER (Circle) OTHER AND TASK OTHER A				Trace Organic	s)		0		1						
VIECT MARGENE: Flora Brooker (PPLER: CONTACT PH: Gale 647 529 or. Description Description Contact PH: Gale 647 529 Contact PH: Gale 647 549 Contact PH: Gale 647 549 <thc< th=""><th>. Ker NO: 123</th><th>136</th><th>3</th><th>ALS QUOT</th><th>E NO.: SYBQ_400</th><th>_18</th><th></th><th></th><th></th><th>UENCE NUMB</th><th>ER (Circle</th><th>Free</th><th>ipt?</th><th>se bricks pre</th><th>sent upon Yes No</th></thc<>	. Ker NO: 123	136	3	ALS QUOT	E NO.: SYBQ_400	_18				UENCE NUMB	ER (Circle	Free	ipt?	se bricks pre	sent upon Yes No
PLARE Multiple Among All SAMPLER NgoBLE O 1905333 PELMODBYH D DY: Amaliad to ALS? (NO) RECEIVED BY: EDD FORMAT (or default): In Provide to: as above RECEIVED BY: DATE TIME: RECEIVED BY: Comments on the provide to: as above RECEIVED BY: DATE TIME:	JECT MANAGER: F	iona Brooker	CONTACT	PH: 0408 687	529	· · · · · · · · · · · · · · · · · · ·								Temperature	on Receipt: *C
Construint EDD FORMAT (or default): Important (or default): <thimportant (or="" default):<="" td="" th<=""><td>PLER: MU</td><td>hamme of</td><td>and the second second</td><td></td><td>Elle 10 Mag</td><td>DISHED BY:</td><td>1</td><td></td><td></td><td>6</td><td></td><td>- Kalina</td><td></td><td></td><td>6.1</td></thimportant>	PLER: MU	hamme of	and the second		Elle 10 Mag	DISHED BY:	1			6		- Kalina			6.1
IRREPORTS DATE TIME: DATE TIME: <td>emailed to ALS? (</td> <td>NO)</td> <td>EDD FORM</td> <td>AT (or default</td> <td>11-0012 10</td> <td>huld</td> <td></td> <td>IL.</td> <td></td> <td>æ</td> <td></td> <td></td> <td></td> <td>E124</td> <td></td>	emailed to ALS? (NO)	EDD FORM	AT (or default	11-0012 10	huld		IL.		æ				E124	
ALS SAMPLE DETAILS CONTAINER INFORMATION Additional Inform LAB ID Sample ID Date / Time Matrix Type & Preservative (role to code being) Total Information of the second of the s	I Reports to: admini	strator@rca.com.au + enviro@	rca.com.au	1.2	DATE/T	IME:	-	DAT	E/TIME: 7	211512	in		11	2101	
ALS SAMPLE DEFAULS CONTAINER INFORMATION AMALYSIS REDURED including SUTES (HE Sub Codes must be listed to affinate sub-prior).	il Invoice to: as abo	ve			21	524	3.4	Spr		154	95			8	
USE MARKE SOLD (s) WATER (W) Contract of Contract Window Marke are required, goetly I data (influence bottle required), and there bottle required, and the	IMENTS/SPECIAL H	ANDLING/STORAGE OR DIS	POSAL:					,							NEWC:
MW1 Water 2500mL A0, 2100mL A0, 200mble vials, 1 purple plastic, 1 M X <th< td=""><td></td><td></td><td></td><td>-</td><td>CONTAINER INFORMATIC</td><td>DN</td><td>ANAL' Where M</td><td>/SIS REQUIR etals are requ</td><td>ED including uired, specify</td><td>I otal (unfiltere</td><td>ed bottle requ</td><td>must be liste lired) or Disso</td><td>d to attract su pived (field fil</td><td>iite price) tered bottle</td><td>Additional Information</td></th<>				-	CONTAINER INFORMATIC	DN	ANAL' Where M	/SIS REQUIR etals are requ	ED including uired, specify	I otal (unfiltere	ed bottle requ	must be liste lired) or Disso	d to attract su pived (field fil	iite price) tered bottle	Additional Information
MW1 Water 2500mL AG, 2 propie viae, 1 purple plastic, 1 X	LAB ID	Sample ID	Date / Time	Matrix			TRH, lived	Р132Б IT РАН	Ан	se re lits in PAH	K055G Ammonia	T-04 Itrite + Nitrate	-18 2H C6-C9 / BTEX	-02 metais	Comments on likely contaminant levels, dilutions, or samples requiring specific C analysis etc.
MW2 Water 1*500mL AG, 2 purple vials, 1 purple plastic, 1 7 X	1	MW1		Water	2*500mL AG, 2*100mL AG, 2 purple vials, 1 purple plastic red plastic, 1 500mL green plastic	^{,1} C9	20		<u>a</u>				× F	× ÷	Double Sample provided for internal QA
MW4 Water 1*50mL AG, 2*0urple viels, 1 purple plastic, 1 600mL green plastic 7 X	*	MW2	1	Water	1*500mL AG, 1*100mL AG, 2 purple vials, 1 purple plastic red plastic, 1 500mL green plastic	^{,1} 7	x	x		x	x	x			
MW6 Water 1 purple plastic, 1 500mL green plastic 1 X M MH7BS CONTAINTING HIGH CONCell HYDROCARBONS V MW6 Water 1 purple plastic, 1 500mL green plastic 2 Image: Contraint of the contrai	~	MW3		Water	1*500mL AG, 1*100mL AG, 2 purple vials, 1 purple plastic red plastic, 1 500mL green plastic	,1 7	x	x		x	x	x			
MW6 Water 1 purple plastic, 1 500mL green plastic 2 X X X X X X X MW10 Water 1 purple plastic, 1 s00mL green plastic 3 X X X X X X X MW10 Water 1 purple plastic, 1 s00mL green plastic 3 X X X X X X X TRIP BLANK \7/S Water vial 1 Image: Comparison of the plastic in the plastic i	V	MW4		Water	1*500mL AG, 1*100mL AG, 2 purple vials, 1 purple plastic red plastic, 1 500mL green plastic	,1 7	x		x	x	x	x			WATERS CONTAIN HIGH CONCENTRATION
TRIP BLANK 17/S Water vial 1 x x x TRIP SPIKE 17/S Water vial 1 x x x Mathematic restriction Vial 1 x x x x	~	MW6		Water	1 purple plastic, 1 500mL green plastic	2					x	x			HYDROCARBONS
TRIP SPIKE V7/S Water vial 1 x Environmental D Sydney Work Order Refer V VA Intative 7 > x x x x Sydney Work Order Refer	\checkmark	MW10		Water	1 purple plastic, 1 red plastic, 1 500mL green plastic	3					x	x		x	
V QA INVERTE 7 X X X X Work Order Refer		TRIP BLANK	17/5	Water	vial	1						-	x		
Work Order Refer	/	TRIP SPIKE	17/5	Water	vial	1		all the second	and the second second				x		Environmental Divisio
LOLTIO	~	QA		Inter		73	x	x		¥	X	X			Work Order Reference
					101	at,	4-	4	1	4	6	.6-	2		

----- / /

.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2416476					
Client Contact Address	: ROBERT CARR & ASSOCIATES P/L : MS FIONA BROOKER : 92 HILL STREET CARRINGTON NSW 2294	Contact: DatAddress: 277	ronmental Division Sydney ae Hambly 289 Woodpark Road Smithfield / Australia 2164			
E-mail Telephone Facsimile	: fionab@rca.com.au : +61 02 4902 9200 : +61 02 4902 9299	Telephone : +61	nae.hambly@alsglobal.com 1-2-8784 8555 1-2-8784 8500			
Project Order number C-O-C number Site Sampler	: 12513e : : : : Muhammad		f 3 2023ROBCAR0002 (EN/222) PM 2013 B3 & ALS QC Standard			
Dates Date Samples Rece Client Requested D Date	· · · · · ·	Issue Date Scheduled Reporting Date	: 21-May-2024 : 28-May-2024			
Delivery Deta Mode of Delivery No. of coolers/boxe Receipt Detail	: Undefined	Security Seal Temperature No. of samples received / an	: Not Available : 6.1'C - Ice present alysed : 9 / 9			

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

is provided, the laboratory and component Matrix: WATER	1 0	Il be assumed by the ckets without a time	- EK055G ia as N By Discrete	- EP132B(PAH) ace Polynuclear Arc	R - NT-04 and Nitrate	- W-02	NATER - W-05 FRH/BTEXN/8 Metals	W-18 - C9)/BTEXN	WATER - W-26 TRH/BTEXN/PAH/8 Metals
Laboratory sample ID	Sampling date / time	Sample ID	WATER - Ammonia	WATER . Ultra Tra	WATER Nitrite ar	WATER 8 Metals	WATER TRH/BT	WATER TRH(C6	WATER TRH/BTE
ES2416476-001	21-May-2024 00:00	MW1	1	1	✓		1		
ES2416476-002	21-May-2024 00:00	MW2	✓	1	✓		1		
ES2416476-003	21-May-2024 00:00	MW3	 ✓ 	1	✓		1		
ES2416476-004	21-May-2024 00:00	MW4	✓		✓				✓
ES2416476-005	21-May-2024 00:00	MW6	1		✓				
ES2416476-006	21-May-2024 00:00	MW10	✓		✓	✓			
ES2416476-007	17-May-2024 00:00	TRIP BLANK						✓	
ES2416476-009	21-May-2024 00:00	QA	✓	✓	✓		✓		

Aromatic Compounds

Discrete Analyser

Matrix: WATER			EP08(
Laboratory sample	Sampling date /	Sample ID	WATER - EP080 BTEXN
ID	time		BT 🕅
ES2416476-008	17-May-2024 00:00	TRIP SPIKE	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ADMINISTRATOR

ADMINISTRATOR		
 *AU Certificate of Analysis - NATA (COA) 	Email	administrator@rca.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	administrator@rca.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	administrator@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	administrator@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	administrator@rca.com.au
- Chain of Custody (CoC) (COC)	Email	administrator@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	administrator@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	administrator@rca.com.au
- EDI Format - XTab (XTAB)	Email	administrator@rca.com.au
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	administrator@rca.com.au
ENVIRO		
 *AU Certificate of Analysis - NATA (COA) 	Email	enviro@rca.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	enviro@rca.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	enviro@rca.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	enviro@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	enviro@rca.com.au
 Chain of Custody (CoC) (COC) 	Email	enviro@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	enviro@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	enviro@rca.com.au
- EDI Format - XTab (XTAB)	Email	enviro@rca.com.au
FIONA BROOKER		
 *AU Certificate of Analysis - NATA (COA) 	Email	fionab@rca.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	fionab@rca.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	fionab@rca.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	fionab@rca.com.au
 Chain of Custody (CoC) (COC) 	Email	fionab@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	fionab@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	fionab@rca.com.au
- EDI Format - XTab (XTAB)	Email	fionab@rca.com.au

Appendix D

Summary of Results

Sample Identification	PQL		Aquatic Ecosystem Guideline ^A Hun		MW1	MW2	MW3	MW4	MW6	MW10
Sample Depth (m) ^C	PQL			(Ingestion)	1.41	1.10	1.01	0.70	0.63	0.00
Date		99% Fresh	95% Fresh	Guideline ^B	21/05/2024	21/05/2024	21/05/2024	21/05/2024	21/05/2024	21/05/2024
	-	-	Samp	le Description	Clear to slightly turbid and no odour.	Slightly turbid, pale brown and no odour.	Slightly turbid, pale brown and no odour.	Turbid, dark grey, oily sheen and strong hydrocarbon odour.	Turbid, brown and no odour.	Turbid, pale brown and no odour.
Sample Purpose					Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring
				e collected by	RCA - MH	RCA - MH	RCA - MH	RCA - MH	RCA - MH	RCA - MH
General Waster Quality (field readings)			· ·	•	•		•			
pH					7.16	6.25	6.38	6.46	5.76	4.21
Electrical Conductivity (mS/cm)					0.77	5.91	5.12	7.41	5.19	17.4
Benzene, Toluene, Ethylbenzene, Xylene	(BTEX)						•			
Benzene	1		950	1	<1	<1	<1	4		
Toluene	2		180	800	<2	<2	<2	<2		
Ethylbenzene	2		80	300	<2	<2	<2	<2		
meta- and para-Xylene	2		275		<2	<2	<2	<2		
ortho-Xylene	2		350		<2	<2	<2	<2		
Total Xylenes	4			600	2	2	2	2		
Total Recoverable Hydrocarbons (TRH)		1	1		1				1	1
TRH C ₆ -C ₁₀	20				<20	<20	<20	3860	-	
TRH >C ₁₀ -C ₁₆	100				<100	<100	<100	16500000		
TRH >C ₁₆ -C ₃₄	100				610	<100	<100	19300000		
TRH >C ₃₄ -C ₄₀	100	1			<100	<100	<100	<14300		
TRH C ₆ -C ₄₀	320	7	7		720	160	160	35811010	-	
Polycyclic Aromatic Hydrocarbons (PAH										
Acenaphthene	0.1	1			<0.1	<0.1	<0.1	<4760		
Acenaphthylene	0.1				<0.1	<0.1	<0.1	<4760		
Anthracene ^D	0.1	0.01			<0.1	<0.1	<0.1	<4760		
Benz(a)anthracene	0.1	0.01			<0.1	<0.1	<0.1	<4760		
Benzo(a) pyrene ^D	0.05	0.1		0.01	<0.05	<0.05	<0.05	<4760		
Benzo(b)&(j)fluoranthene	0.1				<0.1	<0.1	<0.1	<4760		
Benzo(g,h,i)perylene	0.1				<0.1	<0.1	<0.1	<4760		
Benzo(k)fluoranthene	0.1				<0.1	<0.1	<0.1	<4760		
Chrysene	0.1				<0.1	<0.1	<0.1	<4760		
Dibenz(a,h)anthracene	0.1				<0.1	<0.1	<0.1	<4760		
Fluoranthene ^D	0.1	1			<0.1	0.3	0.2	<4760		
Fluorene	0.1				<0.1	<0.1	<0.1	8070		
Indeno(1,2,3-c,d)pyrene	0.1	1			<0.1	<0.1	<0.1	<4760		
Naphthalene	0.1	1	16		<0.1	<0.1	<0.1	14800		
Phenanthrene ^D	0.1	0.6			<0.1	0.1	<0.1	16800	-	
Pyrene	0.1				<0.1	0.2	0.1	<4760		
Metals										
Arsenic	1		13	10	<1	3	2	3		2
Cadmium	0.1		0.2	2	<0.1	<0.1	<0.1	<0.1		0.2
Chromium	1		1	50	<1	<1	<1	<1		3
Copper	1		1.4	2000	3	<1	<1	<1		<1
Lead	1		3.4	10	<1	<1	<1	4		5
Mercury ^D	0.1	0.06	0.6	1	<0.1	<0.1	<0.1	<0.1		<0.1
Nickel	1		11		3	22	7	6		125
Zinc	5		8		12	34	14	20		231
Non Metallic Inorganics										
Ammonia as N	10		900		160	1760	1000	1030	850	220
Nitrate + Nitrite ^E	10	4	10		920	40	2650	100	43800	50

All results are in units of $\mu g/L$

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

^A % Protection Level for Receiving Water Type.

^B Australian Drinking Water Guidelines.

^C Sample depths presented are as encountered at top of pipe or at ground level if pipe below ground prior to commencement of sampling

^D Bioaccummulative Compounds

^E Guidelines for Lowland (Coastal) Rivers in NSW

Ecological guidelines in *italics* are low level reliability guidelines

Ecological arsenic guideline based on As (III) for marine and As (V) for fresh, the lowest of presented guidelines.

Toll Group Groundwater Monitoring Report Toll Tomago Site RCA ref:12513e-211/0, July 2024

Page 1 of 1

Drinking Water arsenic guidelines are based on total arsenic Guidelines for chromium are based on Cr (VI) Results for TRH have been compared to TPH guidelines.

Ecological guidelines for mercury are based on inorganic mercury. Drinking water guidelines for mercury are based on total mercury.

Results shown in BOLD are in excess of the 95% aquatic ecosystems guidelines

Results shown in shading are in excess of the 99% aquatic ecosystems guidelines Results shown in <u>underline</u> are in excess of the human health (ingestion) guideline Where summation required (Xylene, TRH, PAH) calculation includes components reported as non detected as 1/2 PQL.

Groundwater Results Summary Ecological and Drinking Water Comparison

Prepared by: FB Checked by: KY

RCA Australia.