

TOLL SITE TOMAGO

Prepared for TOLL GROUP Prepared by RCA Australia RCA ref 12513e-223/0 **JUNE 2025**

RCA AUSTRALIA

ABN 53 063 515 711

92 Hill Street, CARRINGTON NSW 2294

Telephone: +61 2 4902 9200 Email: <u>administrator@rca.com.au</u> Internet: www.rca.com.au

This document is and shall remain the property of RCA Australia. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission supplied at the time of proposal. Unauthorised use of this document in any form whatsoever is prohibited.

DOCUMENT STATUS							
Rev	Comment	Author	Reviewer	Approved for	Issue (Project Manage	er)	
No	Comment	Autiloi	Reviewei	Name	Signature	Date	
/1	Final	D Bucior/ A Hoang	F Brooker	A Hoang	AH	25.06.25	

	DOCUMENT DISTRIBUTION						
Rev No	Copies	Format	Issued to	Date			
/0	1	Electronic (email)	Toll Group Gaston-Jeane Forget <u>gastonjeane.forget@tollgroup.com</u> Paul Nicou <u>paul.nicou@tollgroup.com</u>	25.06.25			
/0	1	Electronic report	RCA – job archive	25.06.25			

Contents

1	INTRODUCTION	1
2	SITE IDENTIFICATION AND DESCRIPTION	2
3	FIELDWORK	2
4	QUALITY ASSURANCE/ QUALITY CONTROL	3
5	RESULTS	5
6	DISCUSSION	8
7	CONCLUSIONS	9
8	LIMITATIONS	9
REF	ERENCES	10
GLO	SSARY	11

APPENDIX A

DRAWING

APPENDIX B

CALIBRATION RECORD AND FIELD SHEETS

APPENDIX C

QUALITY ASSURANCE REVIEW AND LABORATORY REPORT SHEETS

APPENDIX D

SUMMARY OF RESULTS

RCA ref 12513e-223/0

25 June 2025

Toll Group Old Punt Road Tomago NSW 2322

Attention: Gaston-Jeane Forget

CC: Paul Nicou

Geotechnical Engineering

Engineering Geology

Environmental Engineering

Hydrogeology

Construction Materials Testing

Environmental Monitoring

Noise & Vibration

Occupational Hygiene

GROUNDWATER MONITORING REPORT – MAY 2025 TOLL SITE, TOMAGO

1 INTRODUCTION

This report presents the findings of a groundwater monitoring round undertaken at the Toll Group's (Toll) Tomago site as part of the continuation of a monitoring programme being implemented at the site.

A total of eleven (11) monitoring wells are located at the site, however one (1) well (MW8) has its entire screened interval situated below the groundwater surface and was replaced (by MW8a) and one (1) well (MW5) is inaccessible under a shed/ container. As such, nine (9) of the groundwater wells are used for long term monitoring. Four (4) of the wells are situated in close proximity to the current and former petroleum storage area and the remainder are situated around the site. The locations of the wells are included on **Drawing 1**, **Appendix A**.

Historical monitoring has identified the presence of hydrocarbons and metals in some wells and ammonia in all wells. The Environment Protection Licence (EPL #20125) for the site was amended, formally in March 2022, to include monitoring of selected groundwater wells at the site. The current EPL requires the following six-monthly monitoring in relation to groundwater:

- Hydrocarbons at MW1, MW2, MW3 and MW4.
- pH, electrical conductivity (EC), ammonia, nitrate and nitrite (oxidable nitrogen) and standing water level from MW1, MW2, MW3, MW4, MW6 and MW10.
- Metals at MW1, MW2, MW3, MW4 and MW10.

This report presents the findings of the May 2025 round of monitoring implemented in accordance with the EPL. It is noted that additional works were intended to be undertaken in accordance with a Sampling and Analysis Quality Plan (SAQP, Ref [1]), issued under section 8 of the EPL and endorsed by the appointed NSW EPA accredited Contaminated Land Site Auditor however that there were delays associated with the Toll approval process such that additional wells have not yet been installed.

2 SITE IDENTIFICATION AND DESCRIPTION

The site is described as 12 Old Punt Road, Tomago and Lot 7 DP562394. The site is currently used for the storage of ammonium nitrate, heavy vehicle storage and maintenance works.

Additional site details are shown in **Table 1**.

Table 1Site Details

Current zoning (Ref [2])	E4 – General Industrial	
Current use	Storage of Ammonium Nitrate	
Size of site	2.59 ha	
Land use to the:		
North	Light industrial – petroleum fuel dispensing facility	
South	Light industrial	
East	Old Punt Road, light industrial	
West	Vacant, vegetated land	
Nearest sensitive receptor (human health)	Adjacent residence (although considered to be used as a commercial property) and onsite workers	
Nearest sensitive receptor (environmental)	Unnamed creek approximately 900 m to northwest, marsh lands approximately 700 m to the west and unnamed creek approximately 1.0 km to southwest – both of which connect to Hunter River.	

Drawing 1, **Appendix A** shows the locality and the layout of the site.

3 FIELDWORK

A team of two (2) environmental professionals, experienced in the sampling and handling of potentially contaminated groundwater, undertook monitoring of nine (9) wells on 27 and 28 May 2025 as per the EPL monitoring requirements. The scope of work included:

- Field screening of volatile hydrocarbon vapours in the air space around each well and in the well head space using a photoionisation detector (PID).
 - It is noted that none of the wells have a gas sampling cap and as such field screening the air space around the wells was undertaken prior to removing the groundwater well cap. Screening of the well headspace was then carried out immediately after cap removal by inserting the PID probe directly into the well headspace. The field screening readings are indicative, noting that there was likely to be some loss of volatiles during the well cap removal process such that the PID readings may not be fully representative of the volatile hydrocarbon vapours within the well head space.

- Dipping of all accessible wells to measure the depth to the groundwater and presence of any
 phase separated light non-aqueous phase liquid (LNAPL). No assessment for phase separated
 dense non-aqueous phase liquid (DNAPL) was undertaken.
 - MW5 could not be located due to being undercover pavement or a container and MW8 was
 excluded from the scope. MW6 was buried under approximately 100 mm of hardstand
 material placed at the site since the November 2024 monitoring. Toll personnel located it
 via a metal detector and as such screening and dipping of MW6 was undertaken after the
 completion of the gauging component of the works.
- Placement of a low flow pump into the well and purging until pH and electrical conductivity (EC)
 readings stabilised. A new bladder and the existing designated tubing were used for each well
 during the water sample collection with the low flow pump.
- Following the stabilisation of pH and EC readings, additional field readings of turbidity, dissolved oxygen, temperature and salinity were recorded, and a sample was collected into laboratory prepared bottles and then placed into an insulated container on ice.
 - Samples were 0.45μm filtered prior to preservation for metals analysis.
- The samples were transported to the NATA accredited analytical laboratory and analysed for a suite of chemicals which included benzene, toluene, ethylbenzene, xylene, naphthalene (BTEXN), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury), ammonia and oxidisable nitrogen.

The relevant calibration sheet for the water quality meter and field sheets are attached in **Appendix B**.

PID readings at all wells were recorded at 0.0 ppm, consistent with the results from November 2024, except at MW4.

Groundwater was measured to be at between 0.0 m (i.e., at ground surface) at MW10 and 1.23 m below the surface at MW1.

Visual or olfactory indications of hydrocarbon contamination were identified at well MW4 only during sampling. LNAPL was identified in well MW4 during gauging and sampling.

Due to the use of designated tubing and bladders with the low flow pump, decontamination of the sampling equipment involved rinsing the pump housing, interface dip meter, and water quality meter (Horiba) with biodegradable detergent followed by potable water after each sample.

4 QUALITY ASSURANCE/ QUALITY CONTROL

RCA has reviewed the quality assurance and control in **Appendix C** and assessed the data as follows:

- Accuracy
 - The accuracy of the data has been assessed by internal means (surrogates, laboratory control samples, matrix spikes and method blanks) as being generally acceptable. There were minor non-compliances that were not considered significant to the characterisation of the water quality.
 - The accuracy of the data has not been assessed by external means due to the extent of the scope.

As such the accuracy of the data set is considered acceptable to the extent it was assessed.

Precision

- The precision of the data has been assessed by internal means (duplicates) as being generally acceptable. There was one minor non-compliance which was not considered to indicate significant uncertainty.
- The precision of the data has been assessed by external means (intralaboratory duplicates) as being generally acceptable. There were five (5) results which indicate potential uncertainty; data substitution has been undertaken where the uncertainty was considered potentially significant.

As such the precision of the data set is considered acceptable.

Completeness

- All data that was sought during the investigation was able to be retrieved.
- Chain of custody were completed for all samples.

As such, completeness is considered 100% for the collected samples.

Representativeness

• This assessment has considered groundwater contaminant concentrations on-site. The method of sampling was appropriate for the sampling of volatile compounds within water which was a potential concern at the site.

As such the groundwater data is considered representative of the concentrations at the site.

Comparability

- Works were undertaken by personnel experienced in the sampling of potentially contaminated groundwater. The methodology of the majority of groundwater sampling is consistent with the majority, and the most recent, groundwater sampling techniques.
- MW6 was gauged at a later stage that the other wells as it had been buried and needs to be found. Its water level was similar to the previous November 2024 measurement whereas the other wells in the same aquifer indicated an increase of between 0.14-0.38 m such that the water level may have been impacted by changes in groundwater that the other wells were not.
- All samples were appropriately preserved for the requested analysis and all groundwater samples were kept on ice or in the refrigerator between sampling and analysis.
- All laboratory analyses have been conducted by NATA accredited methodologies that comply with the international standard methods.
- Comparable analytes shown some concurrence between analytical results. The detected concentrations show some concurrence with field observations of the presence of contamination.

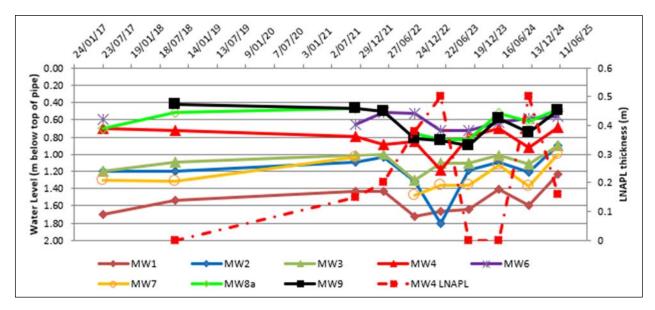
As such it is considered that the comparability of the data is appropriate with the possible exception of the MW6 water level.

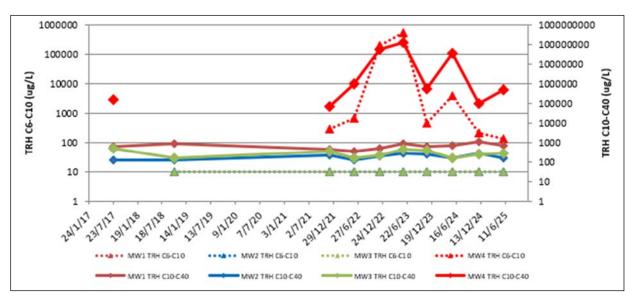
It is therefore considered that the data obtained from this testing is generally accurate and adequately reliable in as far as it can be ascertained with regards to the chemical assessment.

5 RESULTS

Groundwater results from this sampling round were compared to the relevant criteria in **Appendix D**; the following presents a summary.

Groundwater depths of monitoring wells since 2017 were shown in **Figure 1** below. The groundwater monitoring well MW10 remained as 0.0 m (at ground level) since the December 2021 monitoring round. Groundwater depths for all the remaining wells generally decreased, noting the minimal difference in MW6 compared to the other wells may be due to the delay in gauging.




Figure 1 Groundwater levels 2017-2025.

Groundwater contours were generated from the water levels using surveyed data for the wells and indicate a westerly flow direction as presented on **Drawing 1**, **Appendix A**. The potential uncertainty with regards to the MW6 groundwater level was considered and would not, up to a maximum 0.3 increase, change the inferred flow direction. It is noted that RCA have excluded MW10 based on the understanding that it is representative of a different aquifer and have used the ground level of MW1 due to a change in the height of the pipe above the ground since the survey. The flow direction is consistent since November 2023.

With regards to chemical concentrations:

- pH was 3.98 at MW10 and ranged from 5.13 at MW6 to 7.27 at MW1.
- Electrical conductivity ranged from 0.92 mS/cm at MW1 to 9.84 mS/cm at MW3 and was 16.3 mS/cm at MW10.
- BTEX were not detected in monitoring wells MW1, MW2, MW3 or MW4 and as such concentrations were below the ecological (Ref [3]) and the drinking water criteria (Ref [4]). The results are generally consistent with previous results with exception of MW4 well.
- TRH was detected in monitoring wells MW1, MW3 and MW4 and as such were in excess of the ecological criterion (Ref [3]). The results of MW3 and MW4 represented an increase of 7% and 374% respectively, while results at MW1 represented a decrease of 39%. No TRH was found in MW2. All results are within the historical data ranges (refer to **Figure 2** below).

Figure 2 TRH Concentrations 2017-2025 (noting that 2017 data do not include TRH C₆-C₁₀ and that MW1, MW2 and MW3 TRH C₆-C₁₀ has not been detected such that all data is represented by the MW3 series).

PAH compounds were not detected in any wells except for MW4 during this monitoring round. Fluoranthene and phenanthrene concentrations at MW4 exceeded the ecological criteria. Furthermore, anthracene, benzo(a)pyrene and naphthalene in this well were inferred to be in excess of the ecological criteria, although cannot be distinctly quantified due to the raised detection limit. Where quantifiable, the May 2025 results showed increases of 132% for fluorene and 142% for phenanthrene (a bioaccumulative compound) compared to the November 2024 results.

No anthracene or benzo(a)pyrene was detected in MW1, MW2 or MW3 however the detection limits of these compounds were in excess of the ecological criterion and drinking water criterion respectively.

- Metals were detected in all five (5) monitored wells (MW1, MW2, MW3, MW4 and MW10) with the type and concentration of metals varying between wells with the exception of mercury:
 - Arsenic was detected only in MW10; all concentrations were below the ecological and drinking water criteria and are within the historical ranges.
 - Cadmium was detected only in MW10; the concentration was above the ecological criterion
 and less than the drinking water criterion. The concentration marginally increased from the
 November 2024 monitoring round however remains within the historical range.
 - Chromium was detected only in MW10; the concentration was in excess of the hexavalent chromium ecological criterion and less than the drinking water criterion. The concentration marginally increased when compared to the November 2024 monitoring result and is the highest in the historical range.
 - Copper was detected only in MW1 and MW10, and at the same concentration in both wells; the concentrations were slightly in excess of the ecological criterion and less than the drinking water criterion. The MW1 concentration remained unchanged between monitoring events, whereas the MW10 concentration slightly decreased when compared to the November 2024 monitoring result; both concentrations are within the historical ranges.

- Lead was detected only in MW4 and MW10; the concentrations, which were doubled compared to those in November 2024, were in excess of the ecological criterion at both wells and above the drinking water criterion only at MW10. Both are within the historical ranges.
- Nickel was detected in all five (5) analysed wells at varying levels; the concentrations were
 in excess of the ecological criterion only at MW2 and MW10. The concentrations at MW1
 and MW10 increased, decreased at MW2 and MW3 and remained the same at MW4 when
 compared to the November 2024 monitoring results. All concentrations are within the
 historical ranges.
- Zinc was detected in all wells except MW4; concentrations were in excess of the ecological criterion at three (3) out of the four (4) wells. The concentrations increased at MW1 and MW10, whereas decreased at MW2 and MW3 when compared to the November 2024 monitoring results. All concentrations are within the historical ranges.
- Ammonia was detected in all wells as presented in Figure 3; RCA have assigned the criterion based on the pH of the water and temperature of approximately 20°C at each location during this monitoring round as per Table 2 below. Only the result at MW10 was not in excess of the relevant criteria (refer to Appendix D).

Table 2 Ammonia Criterion based on pH and at 20°C

Sampling Location	Measured pH	pH on which Ammonia Criterion based	Ammonia Criterion (99% Fresh/ 95% Fresh)
MW1	7.27	7.3	220/ 680
MW2	6.0	6.0	310/ 930
MW3	6.1	6.1	300/ 920
MW4	6.1	6.1	300/ 920
MW6	5.13	6.0	310/ 930
MW10	3.99	6.0	310/ 930

The concentrations decreased at MW1, MW3 and MW4 from a range of 6.7% (MW4) to 80% (MW3), increased at MW2, MW6 and MW10 from a range of 5% (MW10) to 98% (MW2), when compared to those from November 2024 monitoring round. All results are within the historical ranges with the exception of the MW2 result, which is the highest in the historical range.

Oxidisable nitrogen (nitrate + nitrite) was detected, and the concentrations were in excess of the
ecological criterion in all wells during the May 2025 monitoring round. The results represented
a substantial increase (from 172% to 4400%) compared to those in the previous November 2024
monitoring round. The concentrations at MW2, MW4, MW6 and MW10 are the highest in the
historical ranges whereas those at the remaining wells are within the historical ranges.

Ammonia and oxidisable nitrogen data are presented in **Figure 3** below.

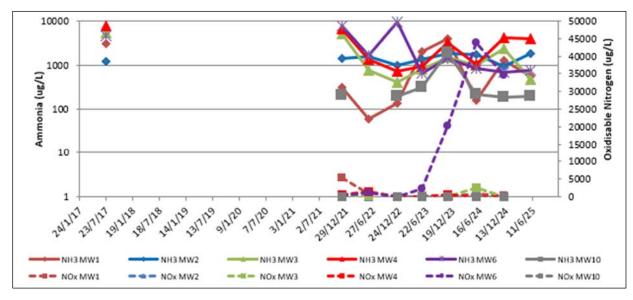


Figure 3 Ammonia and Oxidisable Nitrogen Concentrations 2017-2025.

6 DISCUSSION

Based on the results it is considered that groundwater is impacted by:

- Hydrocarbons in the immediate vicinity of the petroleum infrastructure and historical spill, particularly MW4 which is in close proximity (<5 m) from the refuelling area and associated bowser.
- Ammonia and oxidisable nitrogen in the northern part of the site, except for ammonia at MW10.

A historical surface hydrocarbon spill occurred at the site and MW1, MW2 and MW3 were installed as part of remediation/ validation works. While hydrocarbons have been detected in these wells, the concentrations are minor compared to those detected in MW4. The contamination is considered to be indicative of a diesel product however no specific identification analysis has been undertaken. The cause of the significant increase in the hydrocarbon concentrations at MW4 is unknown in the absence of any known leak of the site's current petroleum facilities.

The highest ammonia concentration is at MW4, considered the upgradient of the sampled wells based on the inferred groundwater flow (refer **Drawing 1**, **Appendix A**) indicated that an offsite source of ammonia is possible, noting that there is significant variation within the aquifer. The receiving water is considered likely to be the Hunter River however groundwater may first discharge into the wetland area to the north and west of the site or into one of the unnamed creeks to the northwest and southwest.

The highest concentration of oxidisable nitrogen was recorded at the downgradient well (MW6), with levels approximately 50 times higher than those observed at the other wells (MW1, MW2, MW3, and MW4) within the same aquifer. As such it is inferred that there may be a localised condition at the location of MW6 which is the cause of the high concentrations. It is noted that MW6 is located in an area designed for trucks used in the transportation of ammonium nitrate. Ammonium nitrate is stored at the site however current practices are such that unless there is an accident that results in the breakage of a bulk bag there should not be any product leakage to the ground.

The metals concentrations in the groundwater are in excess of the ecological criteria, however in the absence of any specific source of metals except potentially lead in association with the petroleum contamination, it is not considered that the site is the likely source of the detected metals. Nickel and zinc are the only metals considered to represent a potential risk to the environment. No further action is considered to be necessary with regards to metals concentrations unless concentrations indicate a potential source of contamination at the site.

7 CONCLUSIONS

This report has presented the findings of groundwater monitoring undertaken at the Toll site situated in Tomago which is currently used for storage of bulk ammonium nitrate as well as storage and maintenance of the heavy vehicle fleet.

A total of six (6) groundwater monitoring wells were sampled and chemically analysed in May 2025 in accordance with the EPL requirements. The collected samples were analysed for hydrocarbons, metals and nitrogen compounds including ammonia, in general accordance with the EPL.

A layer of LNAPL with an approximate thickness of 0.16 m was identified at MW4 during field gauging and sampling, and dissolved hydrocarbon concentrations had significantly increased compared to the results from November 2024. Hydrocarbon contamination at MW1 decreased by 39%, increased 7.4% at MW3 and it was non-detected at MW3.

Ammonia was detected at all wells in excess of the pH-based ecological guidelines (Ref [3]) presented in **Table 2** except for MW10. Oxidisable nitrogen was detected and in excess of the ecological criterion in all wells. The source is considered to be historical use of the site, given that current site practices appear to be suitable for the minimisation of potential ammonia contamination from the storage of ammonium nitrate at the site, however the magnitude of the oxidisable nitrogen at MW6 is considered to indicate a localised impact which may or may not be associated with the use of the site. It is noted that the NSW EPA is satisfied with Toll's 'debagging procedure' and has incorporated its implementation to the existing EPL.

Concentrations of various metals were in excess of the ecological guidelines (Ref [3]) at all bores except for MW3. As the site is not considered the source due to the absence of any known metal-contaminating activities, no further action is required.

The next groundwater monitoring event will be required in accordance with the EPL and as such will be undertaken in November 2025. Additional works as outlined in the SAQP (Ref [1]) may be undertaken.

8 LIMITATIONS

This report has been prepared for Toll Group in accordance with an agreement with RCA Australia (RCA). The services performed by RCA have been conducted in a manner consistent with that generally exercised by members of its profession and consulting practice.

This report has been prepared for the sole use of Toll Group. The report may not contain sufficient information for purposes of other uses or for parties other than Toll Group. This report shall only be presented in full and may not be used to support objectives other than those stated in the report without written permission from RCA Australia.

The information in this report is considered accurate at the date of issue with regard to the current conditions of the site. Conditions can vary across any site that cannot be explicitly defined by investigation. Environmental conditions including contaminant concentrations can change in a limited period of time. This should be considered if the report is used following a significant period of time after the date of issue.

Yours faithfully

RCA AUSTRALIA

Dr. Anh Hoang

anhome

Environmental Scientist

BSc& MSc (Env Sci), PhD (Env Remediation)

REFERENCES

- [1] RCA Australia, Sampling and Analysis Quality Plan for Further Groundwater Assessment Works, Toll Tomago Site, RCA ref 12513d-410/1, July 2024.
- [2] Port Stephens Council, Port Stephens Local Environment Plan 2013 under the Environmental Planning and Assessment Act 1979 as updated 22 March 2024.
- [3] ANZG, Australian and New Zealand Guidelines for Fresh and Marine Water Quality Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018. Available at www.waterquality.gov.au/anz-guidelines.
- [4] National Health and Medical Research Council, *Australian Drinking Water Guidelines*, December 2024.
- [5] Standards Australia, Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, AS 4482.1-2005.
- [6] NEPC, National Environment Protection (Assessment of Site Contamination) Measure, 1999 as amended 2013.

GLOSSARY

ASC NEPM National Environment Protection (Assessment of Site Contamination)

Measure.

Intralaboratory A sample split into two and sent blind to the sample laboratory for

comparative analysis.

kg kilogram, 1000 gram.

LEP Local environment plan. A planning tool for the Local Government.

μg microgram, 1/1000 milligram.

mg milligram, 1/1000 gram.

NAPL Non-aqueous phase liquid. This can be lighter than water (LNAPL), or more

dense than water (DNAPL).

NEPC National Environment Protection Council.

NHMRC National Health and Medical Research Council.

NSW EPA NSW Environment Protection Authority – made a separate entity in 2011 to

regulate the contaminated land industry.

PID Photoionisation detector. Measures volatile gases in air or emanating from

soil or water.

PQL Practical Quantitation Limit.

QA Quality Assurance.

QC Quality Control.

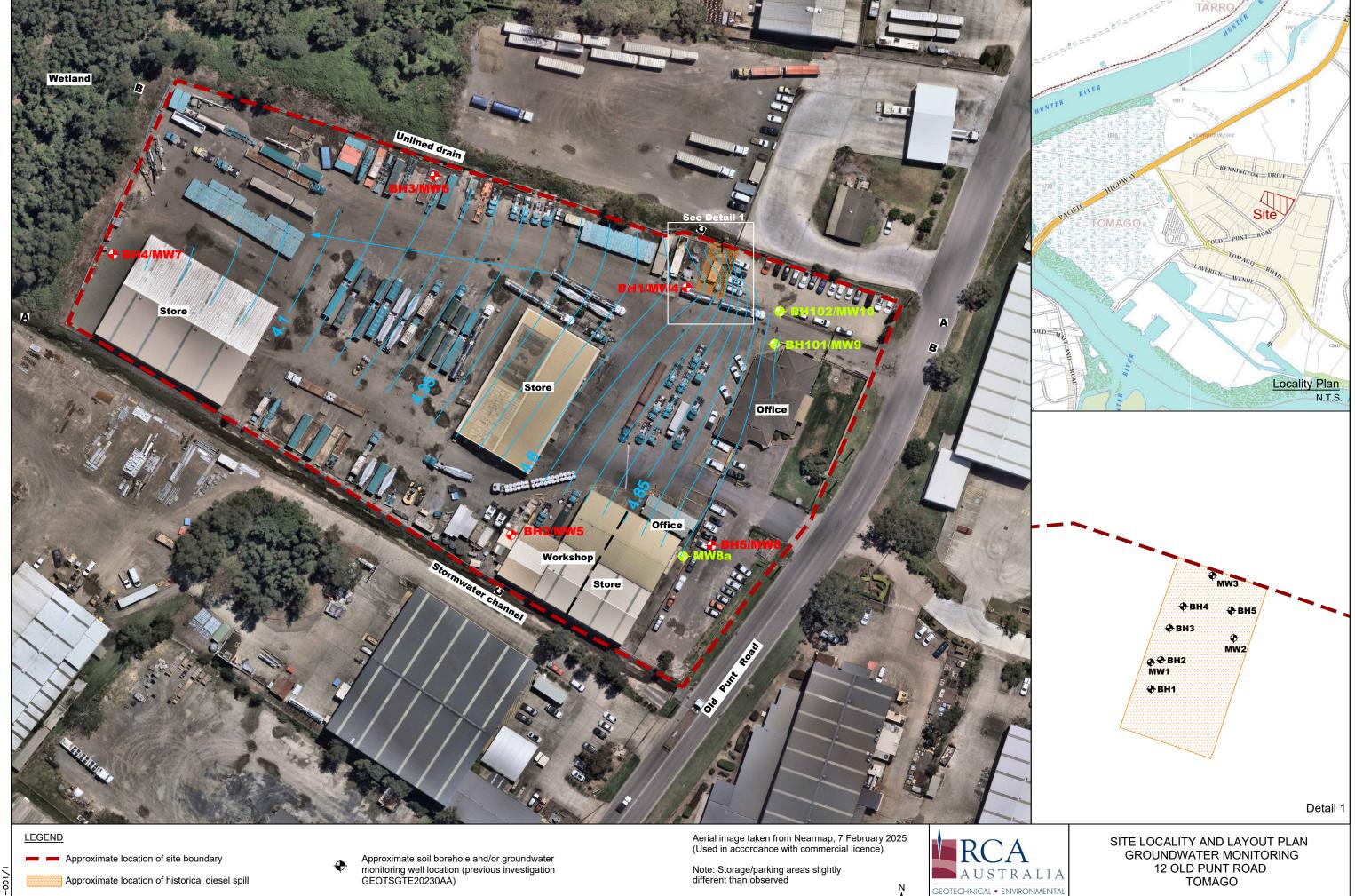
RPD Relative Percentage Difference.

Chemical Compounds

BTEXN Benzene, toluene, ethylbenzene, xylene, naphthalene.

PAH Polycyclic aromatic hydrocarbons. Multi-ring compounds found in fuels, oils

and creosote. These are also common combustion products.


TPH Total petroleum hydrocarbons.

TRH Total recoverable hydrocarbons

Appendix A

Drawing

Toll Group

FB

DATE

RCA Ref

OFFICE

~1: 1000 (A3) DRAWING No

24/06/2025

12513e-223/0

NEWCASTLE

1 REV 0

CLIENT

DRAWN BY

APPROVED BY

Inferred groundwater contours (MW1-4, MW6, MW7, MW8a, MW9 only)

Inferred groundwater direction

Approximate groundwater monitoring well location (2018)

Approximate groundwater monitoring well location (RCA Report 12513-203/1, August 8 2017)

Appendix B

Calibration Record and Field Sheets

SERVICE & CALIBRATION REPORT Water Quality Meter

Customer Details:Job NumberDateRCA24094430/09/2024

92 Hill Street Carrington Attn: Kenny Yan

Instrument Model: Instrument Serial Number:

HORIBA U-52/10m ☑ 1PH7HSWB 2019

Multi-Parameter Water Quality Meter

Fault Report

Requires service/calibration.

Repairs Carried Out

Replaced DO membrane. Refilled pH reference electrode. Cleaned all sensors. Re-calibrated all sensors as follows:

<u>Calibration</u> (in accordance with manufacturer's specifications):

Parameter - unit	Before Calibration	Calibration Value	After calibration	Comment
рН (рН)	7.25	7.01	7.01	Pass
рН (рН)	3.99	4.00	4.00	Pass
ORP (mV)	227	225	225	Pass
Conductivity (mS/cm)	0.000	0.000	0.000	Pass
Conductivity (mS/cm)	0.727	0.718	0.718	Pass
Conductivity (mS/cm)	6.74	6.67	6.67	Pass
Conductivity (mS/cm)	59.1	58.6	58.6	Pass
Turbidity (NTU)	0.0	0.0	0.0	Pass
Turbidity (NTU)	2.1	8.0	8.0	Pass
Turbidity (NTU)	82.7	80.0	80.0	Pass
Turbidity (NTU)	455	400	400	Pass
D.O. zero (mg/L)	0.00	0.00	0.00	Pass
D.O. zero (mg/L)	10.14mg/L @ 21°C	9.12mg/L @21°C	9.12mg/L @21°C	Pass
Temperature (°C)	20.01°C	19.8°C	19.8°C	Pass

Sensors:

pH Glass Electrode	pH Ref Electrode	ORP Electrode	DO Electrode
345078	WGTAD2NV	NH00S3C6	X3H6CF5A

Comments:

MAKE SURE the pH reference electrode is refilled with soln #330 regularly. If the #330 soln solidifies inside the pH reference electrode, remove the liquid junction cap (flat black rubber cap with wick in the middle) and rinse out the old solution with distilled water. Then refill with fresh HORIBA soln # 330 and refit the liquid junction cap. Please read the notes on pH maintenance.

Calibration carried out by:

Tony Fincher

AUSTRALIAN SCIENTIFIC PTY LTD

11 McDougall Street, Kotara, NSW, 2289

TEL: 1800 021 083

E-mail: sales@austscientific.com.au www.austscientific.com.au

Calibration and Service Report - PID

Company: RCA Australia Contact:

Fiona Brooker

Address:

Robert Carr & Associates P/L

PO Box 175 CARRINGTON

Phone: 02 4902 9225

Fax: 02 4902 9299

Email: fionab@rca.com.au

Manufacturer: RAE

Instrument: MINIRAE LITE SN: 590-000760

Model: MINIRAE LITE

Configuration: VOC 10.6EV

Wireless: -Network ID: -

Unit ID: -

Details:

Serial #: 590-000760

Asset #:

Part #: 059-A110-000 Sold: 26.05.2009 Last Cal: 16.04.2025

Job #: 180070

Cal Spec:

Order#: PO40001595

Item	Test	Pass/Fail	Comments	Serial Number
Battery	NiCd, NiMH, Dry cell, Lilon	Р		- Contain Hamilton
Charger	Power Supply	Р		
	Cradle, Travel Charger	Р		
Pump	Flow	Р	>450ml/min	
Filter	Filter, fitting, etc	Р	Replaced	
Alarms	Audible, visual, vibration	Р		
Display	Operation	P		
Switches	Operation	Р		
PCB	Operation	Р		
Connectors	Condition	Р		
Firmware	Version	Р	V2.22A (Fumigation)	
Datalogger	Operation	Р	vz.zz/t (r umgation)	
Monitor Housing	Condition	P	Cleaned	
Case	Condition / Type	-	9.00.100	
Sensors				
PID	Lamp	Р	Cleaned	
PID	Sensor	Р	Cleaned	
THP	Sensor	Р	Sisterior	

Engineer's Report

Cleaned lamp, lamp housing and sensor electrode Checked moisture sensitivity
Checked flowrate and stall values Checked unit settings and PC configuration Unit serviced and calibrated.

Calibration and Service Report - PID

Company: RCA Australia

Manufacturer: RAE

Serial #: 590-000760

Contact: Fiona Brooker

Instrument: MINIRAE LITE SN: 590-000760

Asset #:

Address:

Robert Carr & Associates P/L

Model: MINIRAE LITE

Part #: 059-A110-000

PO Box 175

Configuration: VOC 10.6EV

Sold: 26.05.2009 Last Cal: 16.04.2025

CARRINGTON

Phone: 02 4902 9225

Wireless: -

Job #: 180070

Network ID: -

Cal Spec:

Email: fionab@rca.com.au

Fax: 02 4902 9299

Unit ID: -Details:

Order#: PO40001595

Calibration Certificate

Sensor	Туре	Serial No.	Span	Concentration Traceability	CF	Reading		
			Gas		Lot #		Zero	Span
Oxygen								
LEL								
PID	050-0000-004. 10.6EV 1/ 2 INCH LAMP	S023040020M3/106J8205 39	Isobutylene	100ppm	WO443753-1		0	100.0
Battery	059-3053-000. MINIRAE LITE RECHARGEABLE	167J4W0210						
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								
Toxic 6								

Calibrated/Repaired by:

JERRY JI

Date: 16.04.2025

Next Due: 16.10.2025

ENGINEERING FIELD SHEET

WATER GAUGING RECORD

CLIENT: Toll Group	DATE: 21-5-4
PROJECT: Groundwater Monitoring Programme	PROJECT No: 12513e
LOCATION: Toll Tomago Site	CLIENT REF:
BORE OR LOCATION ID: MW1	
TIME: 8:30 TO 8:30	
BORE DEPTH: 3,22 (m TOP) HE	GIGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER: 1,23	PID IN WELL (ppm):
BORE OR LOCATION ID: MW2	
TIME: 8:50 TO 8:55	
BORE DEPTH: 28 (m TOP) HE	IGHT ABOVE GROUND LEVEL: 06/
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER:	PID IN WELL (ppm):
BORE OR LOCATION ID: MW3	
TIME: 8:40 TO 8:45	
BORE DEPTH: 3 (m TOP) HE	IGHT ABOVE GROUND LEVEL: 0,47
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER: 0.9	PID IN WELL (ppm):
BORE OR LOCATION ID: MW4	
TIME: 8.10 TO 8.25	
BORE DEPTH: 3,23 (m GL)	GHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL: 0153	PID SURFACE (ppm):
DEPTH TO AQUIFER: 0,69	PID IN WELL (ppm): 0, 0
BORE OR LOCATION ID: MW5	
TIME: TO	
BORE DEPTH:(m GL)	GHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER:	PID IN WELL (ppm):

RCA Australia	Sampled by: AM (DB)	Date: 27.5.25

BORE OR LOCATION ID: MW6	
TIME: 13,00 TO 13,05	
BORE DEPTH: 3.23 (m GL) HEIGHT ABOVE GROUND L	EVEL:
DEPTH TO LNAPL: PID SURFACE (ppm)	: 00
DEPTH TO AQUIFER: 0,56 PID IN WELL (ppm	i): _ O O
BORE OR LOCATION ID: MW7	
TIME: 9.35 TO 9.40	
BORE DEPTH: 3,65 (m GL) HEIGHT ABOVE GROUND L	EVEL:
DEPTH TO LNAPL: PID SURFACE (ppm):	: 0,0
DEPTH TO AQUIFER: PID IN WELL (ppm): _ Q U
BORE OR LOCATION ID: MW8a	
TIME: 9,20 TO 9,25	
BORE DEPTH:(m GL) HEIGHT ABOVE GROUND L	.EVEL:
DEPTH TO LNAPL: PID SURFACE (ppm):	· _ 0.C
DEPTH TO AQUIFER: 1 1 1 PID IN WELL (ppm)): <u>0.0</u>
BORE OR LOCATION ID: MW9	
TIME: $9, \omega$ TO 915	
BORE DEPTH: 2 (m GL) HEIGHT ABOVE GROUND L	EVEL:
DEPTH TO LNAPL: PID SURFACE (ppm):	0.0
DEPTH TO AQUIFER: OLL PID IN WELL (ppm)): n.O
BORE OR LOCATION ID: MW1€	
TIME: 9.00 TO 9.05	
BORE DEPTH: 288 (m GL) HEIGHT ABOVE GROUND LI	EVEL:
DEPTH TO LNAPL: NA PID SURFACE (ppm):	0.0
DEPTH TO AQUIFER: At Sur Face PID IN WELL (ppm)): _ O · O

RCA Australia	Sampled by:	AMLOB	Date: 27.5.21
---------------	-------------	-------	---------------

ENGINEERING FIELD SHEET

WATER SAMPLING RECORD

CLIENT:					ATE. 27,5.	. 21
	Toll Group DATE:					
PROJECT:	Grour	ndwater Monitoring Pr	ogramme	PROJECT No: 12513e		
LOCATION:	Toll T	omago Site		CLIENT REF:		
WATER MET	VATER METER USED: Horiba					
METHOD OF SAMPLING: LOW Flow prings						
		ORAGE (TICK):	Field Temp		1 (<4°C)	Frozen
PRESERVAI						
Un-preserved	k	Preserved: A	cid (H ₂ SO ₄)	Acid (HNO ₃)	Alkaline (NaOH)	Filtered
TESTS REQU	IIRED:	Refer to Each Location	ĺ			
BORE OR L	OCATION	N ID: MW1	ANAI YSIS NE	EEDED: Ammonia, Nitr	ate Nitrite FC Hyd	Irocarbons, metals
TIME:	10:30		: 30	VOLUME PURG	2 1	_
	F WATER	R QUALITY CHECK				
Check No.	рН	Conductivity (mS/cm)	Turbidity	Dissolved O₂ (mg/L)	Temperature (°C)	Salinity (%)
1/41	7.44	0.878	52.4	0,38	18.87	0.040
21 + 11	7,24	0,900	58.8	1,67	18,89	0.044
3/ + 11	7,27	0.909	56.5	2.01	18.89	0.041-
4/4/1	7.97	0.917	53.2	2.36	18.82	0.045
5/		, , ,				
6/			/			THOSE WAS TO SHARE THE STATE OF
Sample App	earance:	Grey, Tw	brd, no	odour		
Duplicate/E	quipment	t Wash Identification a	nd Other Remar	ks:	QA here	
			ANIALIVOIONE	EDED A	-t- Number CO Unid	
BORE OR L	OCATION	NID: MW2	3: 20	EEDED: Ammonia, Nitra	Ac /	rocarbons, metals
TIME:	-4		5:00	VOLUME PURG	±υ:	
RESULTS C	-	R QUALITY CHECK		-: · · · · · · · · · · · · · · · · · · ·	T (00)	Caliaita (0/)
Check No.	pH	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)
1/ 411	6.05	Conductivity (mS/cm)	12/	Dissolved O ₂ (mg/L)	M. T2	0,276
1/ + 1 2/ + 1	6.05	5.05		Dissolved O ₂ (mg/L)	M. 12	0.276 0.224
1/ + 1 2/ + 1 3/ + 1	6.05			2. § 1. 0 1 2 6 2	M. 57 19, 37 19, 27	0,276 0,224 0,212
1/ + 2/ + 3/ + 4/ +	6.05	5.05		2. \$ 1. 0 1 2. 6 2 1. 8 0	M. 72 19, 37 19, 47	0,276 0,224 0,211
1/ + 2/ + 3/ + 4/ +	6.05	5.05		2. \$ 1. 0 1 2. 6 2 1. 8 0	M. 37 19, 37 19, 4	0,276 0,224 0,217 0,217
1/ + 1 2/ + 1 3/ + 1 5/ 6/	6,17	5.05 4127 4104 3,94	12/	2.8 1.01 2.62 1.80	M.37 19,37 19,37	0,276 0,224 0,217 0,217
1/ + 1 2/ + 1 3/ + 1 5/ 6/ Sample App	6.05 6.12 6.112 6.100 Dearance:	5.05 4127 4104 3,94	12/ 66.9 37.1	2.8 1.01 2.62 1.80	M.57 19.37 19.47	0,276 0,224 0,211
1/ + 1 2/ + 1 3/ + 1 5/ 6/ Sample App	6.05 6.12 6.112 6.100 Dearance:	5.05 4127 4104 3,94	12/ 66.9 37.1	2.8 1.01 2.62 1.80	M.37 19,33 19,27	0,276 0,224 0,217 0,217
1/ + 1 2/ + 1 3/ + 1 5/ 6/ Sample App	6.05 6.12 6.112 6.100 Dearance:	5.05 4127 4104 3,94	12/ 66.9 37.1	2.8 1.01 2.62 1.80	M.37 19.37 19.47	5alinty (%) 0,276 0,224 0,217
1/ + 1 2/ + 1 3/ + 1 5/ 6/ Sample App	6.05 6.17 6.10 C.00 Decarance:	5,05 4,27 4,024 3,94 Wash Identification a	12 / 66. 9 \$7. 1 and Other Remark	2.8 1.01 2.62 1.80	M.32 19,37 19,27 19,45	0,276
3/ +1 5/ 6/ Sample App Duplicate/Ed	GOS GOS GOS GOS GOS GOS GOS GOS GOS GOS	Wash Identification a	12 / 66. 9 \$7. 1 and Other Remark	2.8 1.01 2.62 1.80 no abur	M. 37 19, 37 19, 77 19, 45	0,276
3/ +1 5/ 6/ Sample App Duplicate/Ed	GOS GOS GOS GOS GOS GOS GOS GOS GOS GOS	S, 0 S 4, 2 T 4, 0 Z 3, 9 Z t Wash Identification a	12 / 66. 9 \$7. 1 and Other Remark	2. § 1. 01 2. 62 1. 80 No advur ks:	M. 37 19, 37 19, 77 19, 45	0,276 0,224 0,012 0,211
3/ +1 5/ 6/ Sample App Duplicate/Ed	GOS GOS GOS GOS GOS GOS GOS GOS GOS GOS	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	12 / 66. 9 \$7. 1 and Other Remark	2. § 1. 01 2. 62 1. 80 No advur ks:	M. 37 19, 37 19, 77 19, 45	0,276
1/ + 1 2/ + 1 3/ + 1 5/ 6/ Sample App Duplicate/Ed	pearance: quipment	Wash Identification a	56. 9 \$7.1 and Other Remar	2. § 1. 01 2. 62 1. § No about ks: EEDED: Ammonia, Nitra VOLUME PURGE	M. 37 19, 37 19, 47 19, 45 ate, Nitrite, EC, Hyden	0,276 0,224 0,012 0,211
1/ 2/	pearance: quipment	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE	2. § 1. 01 2. 62 1. § No about ks: EEDED: Ammonia, Nitra VOLUME PURGE	M. 37 19, 37 19, 47 19, 45 ate, Nitrite, EC, Hyden	0,276 0,224 0,012 0,211
1/ PIL 2/	pearance: quipment	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE	2. § 1. 01 2. 62 1. § No about ks: EEDED: Ammonia, Nitra VOLUME PURGE	M. 37 19, 37 19, 47 19, 45 ate, Nitrite, EC, Hyden	0,276 0,224 0,012 0,211
1/ PIL 2/	pearance: quipment	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE	2. § 1. 01 2. 62 1. § No about ks: EEDED: Ammonia, Nitra VOLUME PURGE	M. 37 19, 37 19, 47 19, 45 ate, Nitrite, EC, Hyden	0,276 0,224 0,012 0,211
3/ +1 5/ 5/ 6/ Sample App Duplicate/Ed Ed Ed Ed Ed Ed Ed Ed	pearance: quipment	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE	2. § 1. 01 2. 62 1. § No about ks: EEDED: Ammonia, Nitra VOLUME PURGE	M. 37 19, 37 19, 47 19, 45 ate, Nitrite, EC, Hyden	0,276 0,224 0,012 0,211
3/ +1 5/ 6/ Sample App Duplicate/Ed BORE OR L TIME: RESULTS O Check No. 1/ +2 1/ 3/ 4/ 5/ 6/	pearance: quipment	Wash Identification a TO R QUALITY CHECK Conductivity (ms/cm)	ANALYSIS NE	2. § 1. 01 2. 62 1. 80 ks: EEDED: Ammonia, Nitra VOLUME PURGE Dissolved O ₂ (mg/L) 1. 1. 3 2. 0. 3	ate, Nitrite, EC, HydeD:	0,276 0,224 0,012 0,211
3/ +1 5/ 6/ Sample App Duplicate/Ed BORE OR L TIME: RESULTS O Check No. 1/ +2 3/ +1 5/ 6/ Sample App	pearance: quipment OCATION II: 40 F WATEF pH 6 19 6 29	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE Turbidity SAO 16T 227	2. 8 1. 01 2. 62 1. 80 ks: EEDED: Ammonia, Nitra VOLUME PURGE Dissolved O ₂ (mg/L) 1. 1. 3 2. 0. 3	ate, Nitrite, EC, HydeD:	0,276 0,224 0,012 0,211
3/ +1 5/ 6/ Sample App Duplicate/Ed BORE OR L TIME: RESULTS O Check No. 1/ +2 3/ +1 5/ 6/ Sample App	pearance: quipment OCATION II: 40 F WATEF pH 6 19 6 29	Wash Identification a TO R QUALITY CHECK Conductivity (ms/cm)	ANALYSIS NE Turbidity SAO 16T 227	2. 8 1. 01 2. 62 1. 80 ks: EEDED: Ammonia, Nitra VOLUME PURGE Dissolved O ₂ (mg/L) 1. 1. 3 2. 0. 3	ate, Nitrite, EC, HydeD:	0,276 0,224 0,012 0,211
3/ +1 5/ 6/ Sample App Duplicate/Ed BORE OR L TIME: RESULTS O Check No. 1/ +2 3/ +1 5/ 6/ Sample App	pearance: quipment OCATION II: 40 F WATEF pH 6 19 6 29	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE Turbidity SAO 16T 227	2. 8 1. 01 2. 62 1. 80 ks: EEDED: Ammonia, Nitra VOLUME PURGE Dissolved O ₂ (mg/L) 1. 1. 3 2. 0. 3	ate, Nitrite, EC, HydeD:	0,276 0,224 0,012 0,211
3/ +1 5/ 6/ Sample App Duplicate/Ed BORE OR L TIME: RESULTS O Check No. 1/ +2 3/ +1 5/ 6/ Sample App	pearance: quipment OCATION II: 40 F WATEF pH 6 19 6 29	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE Turbidity SAO 16T 227	2. 8 1. 01 2. 62 1. 80 Ks: EEDED: Ammonia, Nitra VOLUME PURGE Dissolved O ₂ (mg/L) 1. 1. 2 2. 0. 3 ks: Culphidi	ate, Nitrite, EC, HydeD:	0,276 0,224 0,012 0,211
3/ +1 5/ 6/ Sample App Duplicate/Ed BORE OR L TIME: RESULTS O Check No. 1/ +2 3/ +1 5/ 6/ Sample App	pearance: quipment OCATION PH CATION P	Wash Identification a TO R QUALITY CHECK Conductivity (mS/cm)	ANALYSIS NE Turbidity SAO 16T 227	2. 8 1. 01 2. 62 1. 80 ks: EEDED: Ammonia, Nitra VOLUME PURGE Dissolved O ₂ (mg/L) 1. 1. 3 2. 0. 3	ate, Nitrite, EC, Hydeberger (°C)	0,276 0,224 0,012 0,211

Page 1 of 2

	BORE OR I			_ANALYSIS N	EEDED: Ammonia, Nitr	rate, Nitrite, EC, Hyd	lrocarbons, metals		
	TIME: 4.20 TO 4.40			VOLUME PURGED: 3 2					
	RESULTS OF WATER QUALITY CHECK				Do not sample if LNAPL present				
	Check No.	pH	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)		
	11 +16	6,05	15.5	738	1.24	20.98	0,891		
	2/ -{ [[608	10.1	421	0,32	20.91	0 (7-2		
	3/ 4 ((6.10	9.84	337	D27	20.66	0,260		
	4/		11.3		Vi e	2010			
	5/								
	6/						1		
	Sample Ap	•		, turnel	, sheen &	string h.c	odour		
	Duplicate/E	Equipment	t Wash Identification ar	nd Other Remar	rks:	J			
			Black						
	BORE OR L	OCATION	N ID: MW6	ANALYSIS NE	EEDED: Ammonia, Nitra	ate, Nitrite, EC.			
	TIME:	10:21	тоі	11:00	VOLUME PURGI	4 1			
	RESULTS (OF WATE	R QUALITY CHECK						
28.5.4	Check No.	рН	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)		
20-1-	11 +2L	5.14	9 43	7/000	0,9)	19,19	0,517		
	21+1L	5-13	7.42	798	0.74	19,9	0.489		
	3/ +1 L	5.15	6.93	71000	1.05	1891	0.359		
	41+11	5.13	6.67	71000	0,78	19.20	0.368		
	5/ 41	5.13	6,61	71000	0.76	19,48	0,423		
	6/	3105.7 - 115.0 - 1				/			
	Sample App					dour			
	Duplicate/Equipment Wash Identification and Other Remarks:								
-									
	BORE OR L	BORE OR LOCATION ID: MW10 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, metals							
	TIME:	13:45	To 14:	11	VOLUME PURGE	the same of the sa			
		F WATER	R QUALITY CHECK						
	Check No.	рН	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%)		
	1/+2/	4.03	16.5	71000	1,2	24.9	0,967		
	21+21	397	16,4	71000	0,7	22.024	0,919		
	3/ 4/ [308	12.3	5/00	OCHT	2220	0,951		
1	4/	. 10	V ()	100-			70 /		
- 1	5/								
Į.	6/								
		Sample Appearance: Brown, tubid, no odown							
	Duplicate/Equipment Wash Identification and Other Remarks:								
1									
- 1							1		

RCA Australia Sampled by: AH(DR) Date: 27.5 15 (MWG)

Appendix C

Quality Assurance Review and Laboratory Report Sheets

One (1) water intralaboratory duplicate sample was submitted blind to the laboratory for analysis with the batch of samples. This represents a percentage of greater than 10%, in accordance with the frequency recommended for soil samples by the Australian Standard AS 4482.1 (Ref [5]) and RCA protocol.

One trip blank and one trip spike were submitted with the batch of samples by field personnel in accordance with the frequency recommended for soil samples by the Australian Standard AS 4482.1 (Ref [5]) and RCA protocol.

RCA omitted the field blank due to the low potential for cross contamination from the field conditions during the sampling process and the equipment wash due to the low potential for cross contamination from the designated sampling equipment.

Results, as shown further in this **Appendix**, indicate all the water analyses with RPD of less than 30% except for five (5) results:

- MW1/ QA had elevated RPD for TRH >C₁₆-C₃₄, copper, nickel and ammonia. The sample is
 described as grey and turbid such that sample heterogeneity is considered the likely cause of
 the elevated RPD. There is some uncertainty associated with this sample; however, the sample
 reported the highest concentrations and therefore the uncertainty is considered to be
 conservative, except for:
 - The nickel result in the duplicate was more than 50% of the most stringent criterion and as such the duplicate result was used for characterisation.
 - The ammonia result in the duplicate was more than 2.5 times of the most stringent criterion and as such the duplicate result was used for characterisation.

There was no detectable concentrations within the trip blank, which is considered acceptable.

Recoveries of 80 to 105% were recorded for the trip spike, which are considered acceptable.

ALS was chosen as the primary laboratory; ALS is NATA accredited and are experienced in the analytical requirements for potentially contaminated groundwater. ALS undertook internal quality assurance testing. Results are contained within the laboratory report sheets, included in this **Appendix**. **Table 3** presents a summary of their review.

 Table 3
 Internal Quality Assurance Review

	Number Samples (including QA)	Laboratory Duplicates	Spikes	Laboratory Control Samples	Laboratory Blanks
Requiremen	10%	5%	One every batch	One every batch	
Water					
Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	6	1 (3)	1 (1)	2	2
Mercury	6	1 (1)	0 (1)	1	1
Ammonia	7	1 (1)	1 (0)	1	1
Oxidisable Nitrogen	7	1 (0)	1 (0)	1	1
TRH C ₆ -C ₁₀	6	1 (1)	0 (1)	1	1
TRH >C ₁₀ -C ₄₀	5	1 (0)	1 (0)	1	1
BTEXN	7	1 (1)	0 (1)	1	1
PAH	5	2 (0)	2 (0)	2	2

Numbers in brackets refer the tests undertaken on samples not from this project but within the same laboratory batch.

Examination of the above table indicates that ALS have undertaken laboratory quality assurance testing in accordance with the ASC NEPM (Ref [6]).

With regards to the results of the quality assurance testing:

- Recoveries of surrogates were within acceptance criteria of 70-130% with the exception of the PAH surrogates for MW4 which could not be determined. This is considered to be due to the TRH concentrations which are present and not indicative of uncertainty in the PAH results.
 - It is noted that phenolic surrogates are reported (due to the concurrent PAH analytical method) and indicate a result below 70%. However, as no phenols analysis was undertaken these results are not considered relevant to the site characterisation.
- Relative percentage differences for duplicates were below the acceptance criterion of 30% with the exception of:
 - Sample MW4 acenaphthene with RPD 51.2%, fluorene with RPD 93.6%, phenanthrene with RPD 99.0% and pyrene with RPD 66.9%. This sample is described as turbid and the cause of the high RPD is therefore considered to be sample heterogeneity. Although the variability introduces some uncertainty, the primary sample consistently reported the higher concentrations. Since the primary results are used in the assessment and the variability does not suggest underestimation of potential risk, the uncertainty is considered conservative and not significant.

It is noted that there were anonymous samples with high RPD for copper (62.1%) and zinc (36.1%). These samples were not collected by RCA and as such RCA cannot comment as to the potential reason for the high RPD, however do not consider that the poor RPD necessarily reflects uncertainty on the remainder of the samples in the batch.

• No laboratory blank result was detected above the practical quantification limit (PQL).

- Laboratory control spikes recoveries were within acceptance criteria of 70-130% with exception of:
 - The four (4) PAH results which had recoveries ranges between 66.9% to 69.3%. These are considered minor non-compliance and are not significant.
 - TRH >C₁₀-C₁₆ had the recovery of 67.6% which is considered minor non-compliance and therefore is not significant.
- Matrix spike recoveries were within the within acceptance criteria of 70-130% with the exception of:
 - TRH C₁₀-C₄₀ in MW4 for which a result could not be determined. The detected concentrations were between one (1) and three (3) orders of magnitude above the spiked concentrations such that the absence of a measurable spike recoveries are not considered to represent uncertainty in the result. It is noted that the laboratory raised the PQL to account for the potential uncertainty in the sample.
 - PAH in MW4 was not determined. The two (2) compounds for which the spike is undertaken (acenaphthene and pyrene) were not detected however there were significant concentrations of other PAH compounds (up to 231 μg/L) such that the absence of the recovery of the spiked concentrations (20 μg/L) is not considered to represent an uncertainty. It is noted that the laboratory raised the PQL to account for the potential uncertainty in the sample.
- Holding times were within laboratory specified time frames with the exception of the trip blank and the trip spike which were prepared by the laboratory on 12 May 2025 and not analysed, as there was a delay in fieldwork due to an extreme weather event, until 30 May 2025 such that it was four (4) days out of holding times. As the blank was prepared to not have any detectable concentrations, it is not considered this this non-compliance is significant. The recoveries of the trip spike indicate that there was no significant loss of volatiles from the original spiked concentration and as such the non-compliance is not considered significant.

Quality Assurance Type		Intralaborato	ry Dunlicate		Trip Blank	Trip Spike	
Sample Identification	Primary	MW1	QA		TRIP BLANK	TRIP SPIKE	
Date	PQL	27/05				6/2025	
			RPD %	12/00	112023		
Sample Description		Grey, turbio	, no odour.		Water	Water	
Sample Purpose		Monitoring			Quality Assurance	Quality Assurance	
Sample Collected by		RCA - AH/DB			Laboratory	Laboratory	
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)							
Benzene	<u> </u>	0.5	0.5	0.0	<1	85%	
Toluene	2	1	<u></u>	0.0	<2	80%	
Ethylbenzene	2	1	<u>=</u> 1	0.0	<2	80%	
meta- & para-Xylene	2	<u> </u>	<u> </u>	0.0	<2	80%	
Ortho-xylene	2	1	<u>=</u> 1	0.0	<2	85%	
Polycyclic Aromatic Hydrocarb	ons (PAH)		_				
Napthalene	5 1	<u>2.5</u>	<u>2.5</u>	0.0	<5	105%	
Total Recoverable Hydrocarbo	_	<u> </u>	<u>—</u>	2.2			
TRH C ₆ -C ₁₀	20	10	<u>10</u>	0.0	<20		
TRH >C ₁₀ -C ₁₆	100	<u>50</u>	<u>50</u>	0.0			
TRH >C ₁₆ -C ₃₄	100	590	<u>50</u>	168.8			
TRH >C ₃₄ -C ₄₀	100	<u>50</u>	<u>50</u>	0.0			
Polycyclic Aromatic Hydrocarb		<u> </u>	<u> </u>	0.0			
Acenaphthene	0.1	0.05	0.05	0.0			
Acenaphthylene	0.1	0.05	<u>0.05</u>	0.0			
Anthracene	0.1	0.05	<u>0.05</u>	0.0			
Benz(a)anthracene	0.1	0.05	<u>0.05</u>	0.0			
Benzo(a) pyrene	0.05	<u>0.025</u>	<u>0.025</u>	0.0			
Benzo(b)&(j)fluoranthene	0.03	<u>0.05</u>	0.05	0.0			
Benzo(g,h,i)perylene	0.1	0.05	0.05	0.0			
Benzo(k)fluoranthene	0.1	0.05	0.05	0.0			
Chrysene	0.1	0.05	0.05	0.0			
Dibenz(a,h)anthracene	0.1	0.05	<u>0.05</u>	0.0			
Fluoranthene	0.1	0.05	0.05	0.0			
Fluorene	0.1	0.05	0.05	0.0			
Indeno(1,2,3-c,d)pyrene	0.1	0.05	0.05	0.0			
Naphthalene	0.1	0.05	0.05	0.0			
Phenanthrene	0.1	0.05	0.05	0.0			
Pyrene	0.1	0.05	0.05	0.0			
Metals				3.0			
Arsenic	1	0.5	0.5	0.0			
Cadmium	0.1	0.05	0.05	0.0			
Chromium	1	0.5	0.5	0.0			
Copper	1	2	<u></u> <u>0.5</u>	120.0			
Lead	1	0.5	<u></u> <u>0.5</u>	0.0			
Mercury	0.1	<u>0.05</u>	0.05	0.0			
Nickel	1	4	6	40.0			
Zinc	5	26	15	53.7			
Nutrients							
Ammonia as N	10	390	560	35.8			
Nitrite + Nitrate as N	10	1730	1350	24.7			

Note all units in µg/L except for trip spikes results in % recovery

 $PQL = Practical \ Quantitation \ Limit.$

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results >30% **BOLD identifies** where blanks > PQL

BOLD identifies where spikes outside of 70-130% recovery range

Toll Group Groundwater Monitoring Toll Tomago Site RCA ref:12513e-223/0, June 2025 Prepared by: AH Checked by: FB RCA Australia AWS-TEM-018/18

CERTIFICATE OF ANALYSIS

Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Contact : MS FIONA BROOKER

Address : PO BOX 175

CARRINGTON NSW, AUSTRALIA 2294

Telephone : +61 02 4902 9200

Project : 12513e

Order number : ---C-O-C number : ----

Sampler : AH/DB

Site : ----

Quote number : NSW Custom BQ 2024

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 10

Laboratory : Environmental Division Sydney

Contact : Danae Hambly

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 28-May-2025 11:55

Date Analysis Commenced : 29-May-2025

Issue Date : 05-Jun-2025 11:02

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

Page : 2 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

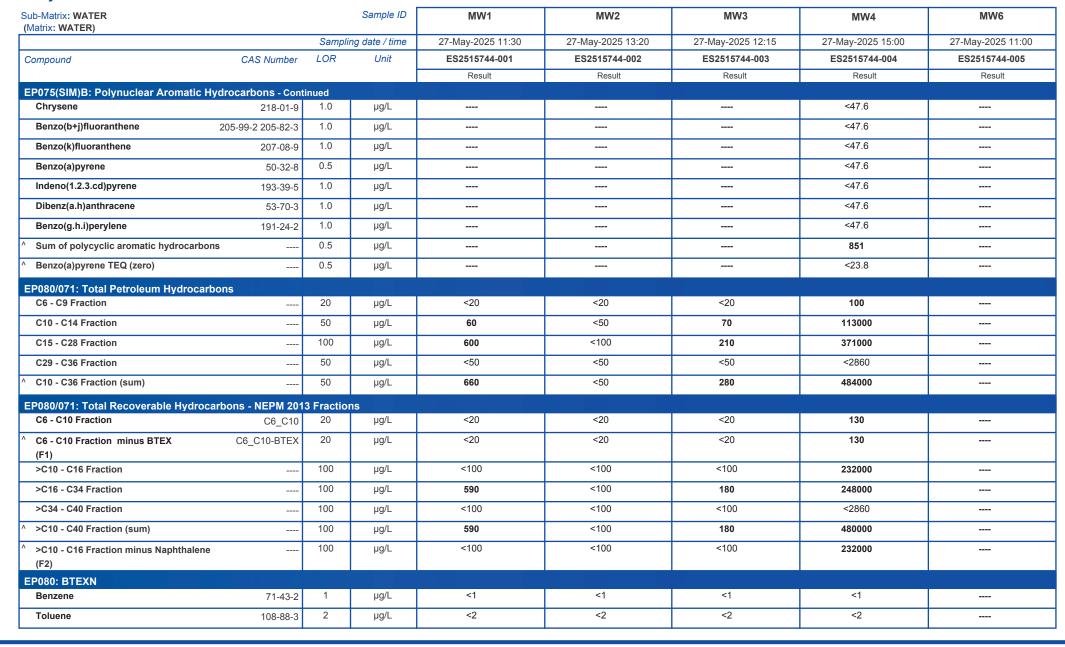
LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP080: The result for sample ES2515744-004 was confirmed by re-analysis.
- EP080: Samples not received in a suitable time frame to conduct the analysis within the recommended holding time.
- EP080: The trip spike and its control have been analysed for volatile TPH and BTEXN only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.
- EP075(SIM): Particular samples required dilution due to sample matrix. LOR values have been adjusted accordingly.
- EP071: Particular samples required dilution due to sample matrix. LOR values have been adjusted accordingly.
- EP132: Where reported, Total PAH reported as the sum of Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benz(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i)perylene.

Page : 3 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e



Page : 4 of 10 Work Order : ES2515744

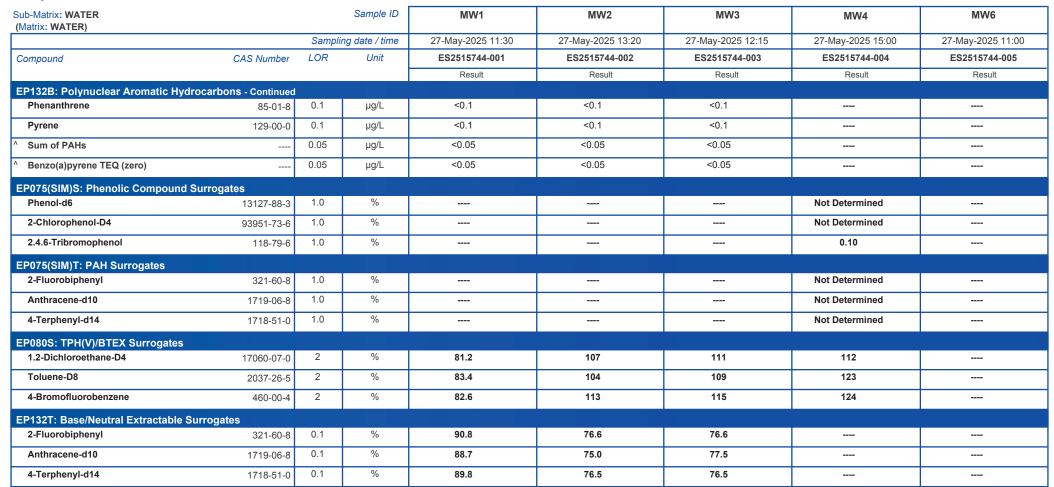
Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Page : 5 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

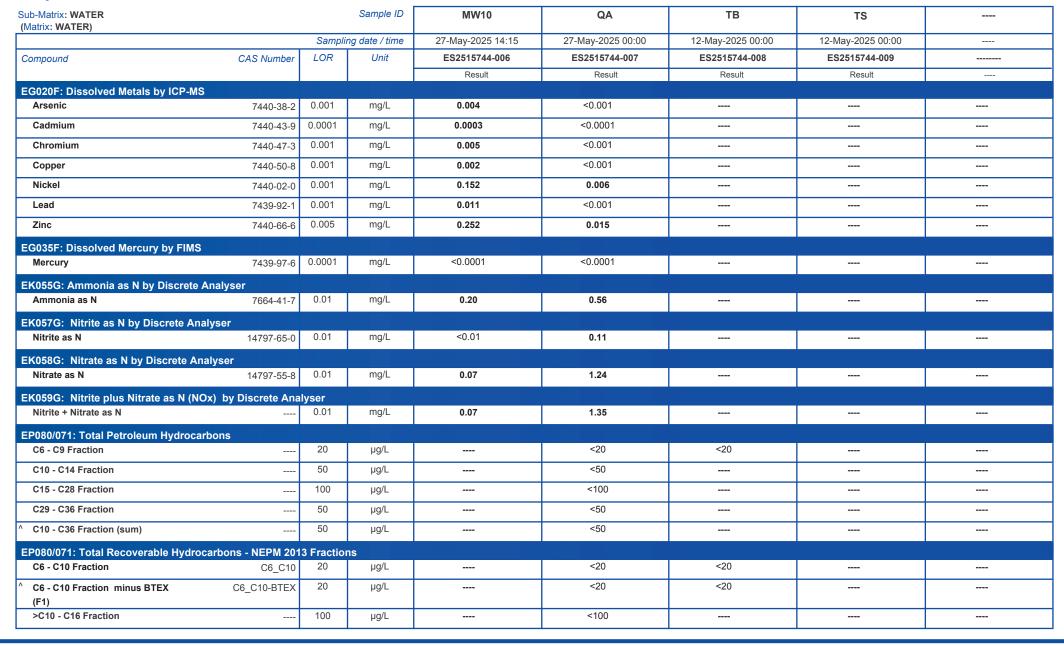
Project : 12513e



Page : 6 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

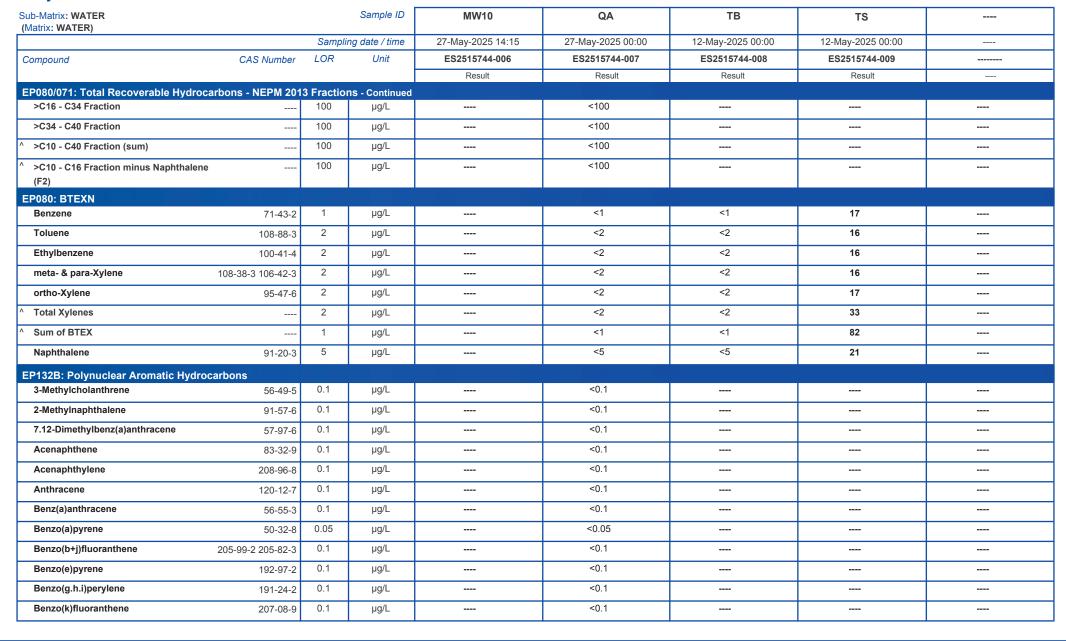
Project : 12513e



Page : 7 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e



Page : 8 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Analytical Results

Page : 9 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Analytical Results

Page : 10 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Su	ırrogates		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	143
Toluene-D8	2037-26-5	75	131
4-Bromofluorobenzene	460-00-4	73	137
EP132T: Base/Neutral Extractable Sui	rogates		
2-Fluorobiphenyl	321-60-8	43	135
Anthracene-d10	1719-06-8	48	138
4-Terphenyl-d14	1718-51-0	48	144

QUALITY CONTROL REPORT

Work Order : **ES2515744** Page : 1 of 10

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Danae Hambly

Address : PO BOX 175 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 4902 9200 Telephone : +61-2-8784 8555

Project: 12513eDate Samples Received: 28-May-2025Order number: ----Date Analysis Commenced: 29-May-2025

C-O-C number : ---- Issue Date : 05-Jun-2025

Site : ---

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

This Quality Control Report contains the following information:

: 9

: 9

: AH/DB

: NSW Custom BQ 2024

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

CARRINGTON NSW. AUSTRALIA 2294

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Sampler

Quote number

No. of samples received

No. of samples analysed

not be reproduced, except in full.

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

Page : 2 of 10 · ES2515744 Work Order

· ROBERT CARR & ASSOCIATES P/L Client

Project · 12513e

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS (Qo	C Lot: 6617700)							
ES2515327-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.004	0.008	62.1	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.013	0.014	0.0	No Limit
ES2515735-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.005	0.006	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.019	0.019	0.0	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.198	0.187	5.6	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (Q	C Lot: 6617702)							
ES2515744-003	MW3	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.008	0.008	0.0	No Limit

Page : 3 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

ES2515744-003 MW3 ES2515960-002 Anonym EG035F: Dissolved Mercury ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Zinc	7440-66-6 7440-43-9 7440-38-2 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-66-6	0.005 0.0001 0.001 0.001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.020 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001	0.020 <0.0001 <0.001 <0.001 <0.001 <0.001	0.0 0.0 0.0 0.0 0.0 0.0 0.0	No Limit
ES2515744-003 MW3 ES2515960-002 Anonym EG035F: Dissolved Mercury ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Zinc	7440-43-9 7440-38-2 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-66-6	0.0001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L	<0.0001 <0.001 <0.001 <0.001 <0.001	<0.0001 <0.001 <0.001 <0.001 <0.001	0.0 0.0 0.0 0.0	No Limit No Limit No Limit No Limit
ES2515960-002 Anonym EG035F: Dissolved Mercury I ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	## FIMS (QC Lot: 6617701) ## EG020A-F: Cadmium ## EG020A-F: Arsenic ## EG020A-F: Chromium ## EG020A-F: Copper ## EG020A-F: Lead ## EG020A-F: Nickel ## EG020A-F: Zinc ## by FIMS (QC Lot: 6617701) ## Windows ## EG035F: Mercury	7440-43-9 7440-38-2 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-66-6	0.0001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L	<0.0001 <0.001 <0.001 <0.001 <0.001	<0.0001 <0.001 <0.001 <0.001 <0.001	0.0 0.0 0.0 0.0	No Limit No Limit No Limit No Limit
EG035F: Dissolved Mercury I ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Arsenic EG020A-F: Chromium EG020A-F: Copper EG020A-F: Lead EG020A-F: Nickel EG020A-F: Zinc / by FIMS (QC Lot: 6617701) /mous EG035F: Mercury	7440-38-2 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-66-6	0.001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	0.0 0.0 0.0	No Limit No Limit No Limit
ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Chromium EG020A-F: Copper EG020A-F: Lead EG020A-F: Nickel EG020A-F: Zinc / by FIMS (QC Lot: 6617701) /mous EG035F: Mercury	7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-66-6	0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	0.0	No Limit No Limit
ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Copper EG020A-F: Lead EG020A-F: Nickel EG020A-F: Zinc / by FIMS (QC Lot: 6617701) /mous EG035F: Mercury	7440-50-8 7439-92-1 7440-02-0 7440-66-6	0.001 0.001 0.001	mg/L mg/L mg/L	<0.001 <0.001	<0.001 <0.001	0.0	No Limit
ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Lead EG020A-F: Nickel EG020A-F: Zinc / by FIMS (QC Lot: 6617701) /mous EG035F: Mercury	7439-92-1 7440-02-0 7440-66-6	0.001 0.001	mg/L mg/L	<0.001	<0.001		
ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Nickel EG020A-F: Zinc y by FIMS (QC Lot: 6617701) ymous EG035F: Mercury	7440-02-0 7440-66-6	0.001	mg/L			0.0	No Lineit
ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	EG020A-F: Zinc / by FIMS (QC Lot: 6617701) /mous EG035F: Mercury	7440-66-6		_	< 0.001			No Limit
ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	y by FIMS (QC Lot: 6617701) ymous EG035F: Mercury		0.005	ma/l		<0.001	0.0	No Limit
ES2515713-001 Anonym ES2515744-007 QA EK055G: Ammonia as N by D	ymous EG035F: Mercury	7439-97-6		IIIg/L	0.016	0.023	36.1	No Limit
ES2515744-007 QA EK055G: Ammonia as N by D		7439-97-6						
EK055G: Ammonia as N by D	EG035F: Mercury	. 130 01 0	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	2000011111010411	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	Discrete Analyser (QC Lot: 6619727)							
ES2515807-049 Anonym	ymous EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.08	0.0	No Limit
ES2515744-001 MW1	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.39	0.39	0.0	0% - 20%
EK057G: Nitrite as N by Disc	screte Analyser (QC Lot: 6613234)							
ES2515744-001 MW1	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.02	0.02	0.0	No Limit
EK059G: Nitrite plus Nitrate	e as N (NOx) by Discrete Analyser (QC Lot: 6619726)							
ES2515744-001 MW1	EK059G: Nitrite + Nitrate as N		0.01	mg/L	1.73	1.73	0.0	0% - 20%
EP075(SIM)B: Polynuclear A	Aromatic Hydrocarbons (QC Lot: 6614016)							
ES2515744-004 MW4	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Naphthalene	91-20-3	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Acenaphthylene	208-96-8	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Acenaphthene	83-32-9	1 (47.6)*	μg/L	80.4	<47.6	51.2	No Limit
	EP075(SIM): Fluorene	86-73-7	1 (47.6)*	μg/L	231	83.8	93.6	No Limit
	EP075(SIM): Phenanthrene	85-01-8	1 (47.6)*	μg/L	384	130	99.0	No Limit
	EP075(SIM): Anthracene	120-12-7	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Fluoranthene	206-44-0	1 (47.6)*	μg/L	60.3	<47.6	23.5	No Limit
	EP075(SIM): Pyrene	129-00-0	1 (47.6)*	μg/L	95.5	<47.6	66.9	No Limit
	EP075(SIM): Benz(a)anthracene	56-55-3	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Chrysene	218-01-9	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		205-82-3						
	EP075(SIM): Benzo(k)fluoranthene	207-08-9	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
	EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit

Page : 4 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report	•	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pet	troleum Hydrocarbon	s (QC Lot: 6614015) - continued							
ES2515744-004	MW4	EP071: C15 - C28 Fraction		100 (2860)*	μg/L	371000	327000	12.7	0% - 20%
		EP071: C10 - C14 Fraction		50 (2860)*	μg/L	113000	111000	1.7	0% - 20%
		EP071: C29 - C36 Fraction		50 (2860)*	μg/L	<2860	<2860	0.0	No Limit
EP080/071: Total Pet	troleum Hydrocarbon	s (QC Lot: 6614238)							
EN2508859-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2515744-007	QA	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 6614015)							
ES2515744-004	MW4	EP071: >C10 - C16 Fraction		100 (2860)*	μg/L	232000	221000	4.5	0% - 20%
		EP071: >C16 - C34 Fraction		100 (2860)*	μg/L	248000	213000	15.5	0% - 20%
		EP071: >C34 - C40 Fraction		100 (2860)*	μg/L	<2860	<2860	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 6614238)							
EN2508859-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2515744-007	QA	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC I	Lot: 6614238)								
EN2508859-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2515744-007	QA	EP080: Benzene	71-43-2	1	μg/L	<1	1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3	_			_		
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
		bons (QC Lot: 6614006)							
ES2515744-001	MW1	EP132: Benzo(a)pyrene	50-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP132: 3-Methylcholanthrene	56-49-5	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: 2-Methylnaphthalene	91-57-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Acenaphthene	83-32-9	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Acenaphthylene	208-96-8	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Anthracene	120-12-7	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benz(a)anthracene	56-55-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit

Page : 5 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP132B: Polynuclea	r Aromatic Hydrocarbons (QC Lot: 6614006) - continued								
ES2515744-001	MW1	EP132: Benzo(b+j)fluoranthene	205-99-2	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
			205-82-3							
		EP132: Benzo(e)pyrene	192-97-2	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Benzo(g.h.i)perylene	191-24-2	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Benzo(k)fluoranthene	207-08-9	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Chrysene	218-01-9	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Coronene	191-07-1	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Dibenz(a.h)anthracene	53-70-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Fluoranthene	206-44-0	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Fluorene	86-73-7	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Indeno(1.2.3.cd)pyrene	193-39-5	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Naphthalene	91-20-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Perylene	198-55-0	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Phenanthrene	85-01-8	0.1	μg/L	<0.1	<0.1	0.0	No Limit	
		EP132: Pyrene	129-00-0	0.1	μg/L	<0.1	<0.1	0.0	No Limit	

Page : 6 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 6617700)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	95.9	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.2	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	94.5	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	94.6	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	91.2	83.0	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.9	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	95.2	81.0	117
EG020F: Dissolved Metals by ICP-MS (QCLot: 6617702)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.4	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	99.3	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.4	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	99.5	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.2	83.0	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	99.5	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	81.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 6617701)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	91.3	83.0	105
EK055G: Ammonia as N by Discrete Analyser (QCLot: 66197	27)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	102	90.0	114
EK057G: Nitrite as N by Discrete Analyser (QCLot: 6613234)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	104	82.0	114
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyse	r (QCLot: 661	19726)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	105	91.0	113
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot:	6614016)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	80.5	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	79.8	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	77.6	62.2	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	79.7	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	70.9	62.6	116
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	67.8	64.3	116
			1					

Page : 7 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 6614016) -	continued							
EP075(SIM): Fluoranthene 206-44-0	1	μg/L	<1.0	5 μg/L	73.6	63.6	118	
EP075(SIM): Pyrene 129-00-0	1	μg/L	<1.0	5 μg/L	72.7	63.1	118	
EP075(SIM): Benz(a)anthracene 56-55-3	1	μg/L	<1.0	5 μg/L	75.1	64.1	117	
EP075(SIM): Chrysene 218-01-9	1	μg/L	<1.0	5 μg/L	76.1	62.5	116	
EP075(SIM): Benzo(b+j)fluoranthene 205-99-2 205-82-3	1	μg/L	<1.0	5 μg/L	84.6	61.7	119	
EP075(SIM): Benzo(k)fluoranthene 207-08-9	1	μg/L	<1.0	5 μg/L	74.9	63.0	115	
EP075(SIM): Benzo(a)pyrene 50-32-8	0.5	μg/L	<0.5	5 μg/L	70.1	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	1	μg/L	<1.0	5 μg/L	69.3	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	1	μg/L	<1.0	5 μg/L	66.9	61.2	117	
EP075(SIM): Benzo(g.h.i)perylene 191-24-2	1	μg/L	<1.0	5 μg/L	67.9	59.1	118	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 6614015)								
EP071: C10 - C14 Fraction	50	μg/L	<50	400 μg/L	61.9	53.7	97.0	
EP071: C15 - C28 Fraction	100	μg/L	<100	600 μg/L	87.5	63.3	107	
EP071: C29 - C36 Fraction	50	μg/L	<50	400 μg/L	108	58.3	120	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 6614238)								
EP080: C6 - C9 Fraction	20	μg/L	<20	260 μg/L	88.5	75.0	127	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (Q	CLot: 6614015)							
EP071: >C10 - C16 Fraction	100	μg/L	<100	500 μg/L	67.6	53.9	95.5	
EP071: >C16 - C34 Fraction	100	μg/L	<100	700 μg/L	96.9	57.8	110	
EP071: >C34 - C40 Fraction	100	μg/L	<100	300 μg/L	115	50.5	115	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (Q	CLot: 6614238)							
EP080: C6 - C10 Fraction C6_C10	20	μg/L	<20	310 μg/L	83.1	75.0	127	
EP080: BTEXN (QCLot: 6614238)								
EP080: Benzene 71-43-2	1	μg/L	<1	10 μg/L	88.2	68.3	119	
EP080: Toluene 108-88-3	2	μg/L	<2	10 μg/L	90.1	73.5	120	
EP080: Ethylbenzene 100-41-4	2	μg/L	<2	10 μg/L	93.6	73.8	122	
EP080: meta- & para-Xylene 108-38-3 106-42-3	2	μg/L	<2	10 μg/L	101	73.0	122	
EP080: ortho-Xylene 95-47-6	2	μg/L	<2	10 μg/L	95.2	76.4	123	
EP080: Naphthalene 91-20-3	5	μg/L	<5	10 μg/L	106	75.5	124	
EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 6614006)								
EP132: 3-Methylcholanthrene 56-49-5	0.1	μg/L	<0.1	2 μg/L	99.6	60.0	120	
EP132: 2-Methylnaphthalene 91-57-6	0.1	μg/L	<0.1	2 μg/L	87.6	59.0	123	
EP132: 7.12-Dimethylbenz(a)anthracene 57-97-6	0.1	μg/L	<0.1	2 μg/L	125	36.0	144	

Page : 8 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 6614006) - conti	nued						
EP132: Acenaphthene 83-32-9	0.1	μg/L	<0.1	2 μg/L	89.6	64.0	122
EP132: Acenaphthylene 208-96-8	0.1	μg/L	<0.1	2 μg/L	93.3	64.0	126
EP132: Anthracene 120-12-7	0.1	μg/L	<0.1	2 μg/L	91.8	65.0	127
EP132: Benz(a)anthracene 56-55-3	0.1	μg/L	<0.1	2 μg/L	100	64.0	130
EP132: Benzo(a)pyrene 50-32-8	0.05	μg/L	<0.05	2 μg/L	93.5	64.0	126
EP132: Benzo(b+j)fluoranthene 205-99-2	0.1	μg/L	<0.1	2 μg/L	96.5	62.0	126
205-82-3							
EP132: Benzo(e)pyrene 192-97-2	0.1	μg/L	<0.1	2 μg/L	93.0	62.0	126
EP132: Benzo(g.h.i)perylene 191-24-2	0.1	μg/L	<0.1	2 μg/L	92.1	56.0	126
EP132: Benzo(k)fluoranthene 207-08-9	0.1	μg/L	<0.1	2 μg/L	92.1	68.0	130
EP132: Chrysene 218-01-9	0.1	μg/L	<0.1	2 μg/L	96.4	66.0	130
EP132: Coronene 191-07-1	0.1	μg/L	<0.1	2 μg/L	94.9	35.0	133
EP132: Dibenz(a.h)anthracene 53-70-3	0.1	μg/L	<0.1	2 μg/L	93.1	58.0	128
EP132: Fluoranthene 206-44-0	0.1	μg/L	<0.1	2 μg/L	94.5	65.0	127
EP132: Fluorene 86-73-7	0.1	μg/L	<0.1	2 μg/L	90.7	64.0	124
EP132: Indeno(1.2.3.cd)pyrene 193-39-5	0.1	μg/L	<0.1	2 μg/L	93.4	57.0	127
EP132: Naphthalene 91-20-3	0.1	μg/L	<0.1	2 μg/L	85.8	54.0	128
EP132: Perylene 198-55-0	0.1	μg/L	<0.1	2 μg/L	91.9	66.0	130
EP132: Phenanthrene 85-01-8	0.1	μg/L	<0.1	2 μg/L	92.7	65.0	129
EP132: Pyrene 129-00-0	0.1	μg/L	<0.1	2 μg/L	93.4	66.0	128

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable i	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 6617700)						
ES2515534-001	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	101	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	94.5	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	91.7	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	97.1	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	104	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	93.6	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	93.5	70.0	130

Page : 9 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 6617702)						
ES2515744-004	MW4	EG020A-F: Arsenic	7440-38-2	1 mg/L	81.4	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.125 mg/L	93.6	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	71.8	70.0	130
		EG020A-F: Copper	7440-50-8	0.25 mg/L	71.9	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	86.8	70.0	130
		EG020A-F: Nickel	7440-02-0	0.25 mg/L	91.2	70.0	130
		EG020A-F: Zinc	7440-66-6	0.25 mg/L	84.8	70.0	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 6617701)						
ES2515686-023	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	88.3	70.0	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 6619	727)					
ES2515744-001	MW1	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	107	70.0	130
	N by Discrete Analyser (QCLot: 6613234						·
ES2515744-001	MW1	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	114	70.0	130
	us Nitrate as N (NOx) by Discrete Analys		11707 00 0	0.0 mg/L		70.0	100
				0.5	445	70.0	400
ES2515744-001	MW1	EK059G: Nitrite + Nitrate as N		0.5 mg/L	115	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot:	6614016)					
ES2515744-004	MW4	EP075(SIM): Acenaphthene	83-32-9	20 μg/L	# Not	70.0	130
					Determined		
		EP075(SIM): Pyrene	129-00-0	20 μg/L	# Not	70.0	130
					Determined		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 6614015	5)					
ES2515744-004	MW4	EP071: C10 - C14 Fraction		200 μg/L	# Not	70.0	130
					Determined		
		EP071: C15 - C28 Fraction		250 μg/L	# Not	71.0	130
				200	Determined	67.0	130
		EP071: C29 - C36 Fraction		200 μg/L	# Not	67.0	130
					Determined		
	etroleum Hydrocarbons (QCLot: 6614238			227 11			100
EN2508859-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	79.5	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 F	ractions (QCLot: 6614015)					
ES2515744-004	MW4	EP071: >C10 - C16 Fraction		250 μg/L	# Not	70.0	130
					Determined		
		EP071: >C16 - C34 Fraction		350 μg/L	# Not	75.0	130
					Determined		
		EP071: >C34 - C40 Fraction		150 μg/L	# Not	67.0	130
					Determined		

Page : 10 of 10 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable l	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 Fractions (Q	CLot: 6614238)					
EN2508859-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	72.4	70.0	130
EP080: BTEXN (Q	CLot: 6614238)						
EN2508859-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	84.3	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	85.4	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	85.6	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	85.4	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	80.5	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	81.5	70.0	130
EP132B: Polynucie	ear Aromatic Hydrocarbons (QCLot: 6614006)						
ES2515744-001	MW1	EP132: 3-Methylcholanthrene	56-49-5	2 μg/L	86.7	59.0	115
		EP132: 2-Methylnaphthalene	91-57-6	2 μg/L	75.4	46.0	120
		EP132: 7.12-Dimethylbenz(a)anthracene	57-97-6	2 μg/L	104	21.0	135
		EP132: Acenaphthene	83-32-9	2 μg/L	76.1	62.0	114
		EP132: Acenaphthylene	208-96-8	2 μg/L	79.5	61.0	119
		EP132: Anthracene	120-12-7	2 μg/L	77.5	68.0	116
		EP132: Benz(a)anthracene	56-55-3	2 μg/L	85.3	67.0	122
		EP132: Benzo(a)pyrene	50-32-8	2 μg/L	79.8	72.0	114
		EP132: Benzo(b+j)fluoranthene	205-99-2	2 μg/L	81.8	69.0	119
			205-82-3				
		EP132: Benzo(e)pyrene	192-97-2	2 μg/L	78.8	71.0	119
		EP132: Benzo(g.h.i)perylene	191-24-2	2 μg/L	79.0	49.0	133
		EP132: Benzo(k)fluoranthene	207-08-9	2 μg/L	77.4	71.0	124
		EP132: Chrysene	218-01-9	2 μg/L	81.5	70.0	118
		EP132: Coronene	191-07-1	2 μg/L	82.2	29.0	138
		EP132: Dibenz(a.h)anthracene	53-70-3	2 μg/L	79.2	60.0	122
		EP132: Fluoranthene	206-44-0	2 μg/L	81.4	65.0	121
		EP132: Fluorene	86-73-7	2 μg/L	76.8	63.0	118
		EP132: Indeno(1.2.3.cd)pyrene	193-39-5	2 μg/L	80.4	57.0	123
		EP132: Naphthalene	91-20-3	2 μg/L	73.6	53.0	115
		EP132: Perylene	198-55-0	2 μg/L	77.3	71.0	118
		EP132: Phenanthrene	85-01-8	2 μg/L	78.2	67.0	120
		EP132: Pyrene	129-00-0	2 μg/L	80.5	70.0	117

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2515744** Page : 1 of 9

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

 Contact
 : MS FIONA BROOKER
 Telephone
 : +61-2-8784 8555

 Project
 : 12513e
 Date Samples Received
 : 28-May-2025

 Site
 : --- Issue Date
 : 05-Jun-2025

Sampler : AH/DB No. of samples received : 9
Order number : ---- No. of samples analysed : 9

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 9
Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2515744004	MW4	Acenaphthene	83-32-9	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2515744004	MW4	Pyrene	129-00-0	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2515744004	MW4	C10 - C14 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2515744004	MW4	C15 - C28 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2515744004	MW4	C29 - C36 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	ES2515744004	MW4	>C10 - C16 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	ES2515744004	MW4	>C16 - C34 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	ES2515744004	MW4	>C34 - C40 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Regular Sample Surrogates

Sub-Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP075(SIM)S: Phenolic Compound Surrogates	ES2515744-004	MW4	2.4.6-Tribromophenol	118-79-6	0.10 %	17.0-125	Recovery less than lower data quality
						%	objective

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Matrix: WATER	_						
Method	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
			overdue			overdue	
EP080/071: Total Petroleum Hydrocarbons							
Amber VOC Vial - Sulfuric Acid							
TB	30-May-2025	26-May-2025	4	30-May-2025	26-May-2025	4	

Page : 3 of 9
Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Matrix: WATER

Method	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
			overdue			overdue	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber VOC Vial - Sulfuric Acid							
ТВ	30-May-2025	26-May-2025	4	30-May-2025	26-May-2025	4	
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid							
TB, TS	30-May-2025	26-May-2025	4	30-May-2025	26-May-2025	4	

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Wallix. WATER					Lvalaation	. Holding time	breach, V - With	iii iioidiiig tiiii
Method		Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Natural (EG020A-F)								
MW1,	MW2,	27-May-2025				02-Jun-2025	23-Nov-2025	✓
MW3,	MW4,							
MW10,	QA							
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Natural (EG035F)								
MW1,	MW2,	27-May-2025				03-Jun-2025	24-Jun-2025	✓
MW3,	MW4,							
MW10,	QA							
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW1,	MW2,	27-May-2025				03-Jun-2025	24-Jun-2025	✓
MW3,	MW4,							
MW6,	MW10,							
QA								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
MW1,	MW2,	27-May-2025				29-May-2025	29-May-2025	✓
MW3,	MW4,							
MW6,	MW10,							
QA								

Page : 4 of 9 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method		Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: Nitrite plus Nitrate as N (NOx) by Discret	e Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)	- Tildiyool		<u> </u>					
MW1,	MW2,	27-May-2025				03-Jun-2025	24-Jun-2025	1
MW3,	MW4,							
MW6,	MW10,							
QA								
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM))								
MW4		27-May-2025	30-May-2025	03-Jun-2025	✓	03-Jun-2025	09-Jul-2025	✓
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
MW1,	MW2,	27-May-2025	30-May-2025	03-Jun-2025	✓	02-Jun-2025	09-Jul-2025	✓
MW3,	QA							
Amber Glass Bottle - Unpreserved (EP071)		27-May-2025	20 May 2025	03-Jun-2025		03-Jun-2025	09-Jul-2025	
MW4		21-iviay-2025	30-May-2025	03-3011-2023	✓	03-Juli-2025	09-301-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080) TB		12-May-2025	30-May-2025	26-May-2025	<u> </u>	30-May-2025	26-May-2025	×
Amber VOC Vial - Sulfuric Acid (EP080)		,		,			,	
MW1		27-May-2025	30-May-2025	10-Jun-2025	1	02-Jun-2025	10-Jun-2025	1
Amber VOC Vial - Sulfuric Acid (EP080)								·
MW2,	MW3,	27-May-2025	30-May-2025	10-Jun-2025	✓	30-May-2025	10-Jun-2025	✓
MW4,	QA							
EP080/071: Total Recoverable Hydrocarbons - NEP	M 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
MW1,	MW2,	27-May-2025	30-May-2025	03-Jun-2025	✓	02-Jun-2025	09-Jul-2025	✓
MW3,	QA							
Amber Glass Bottle - Unpreserved (EP071)		27-May-2025	30-May-2025	03-Jun-2025	1	03-Jun-2025	09-Jul-2025	
MW4		21-iviay-2025	30-IVIAY-2025	03-3011-2023	√	03-Juli-2025	09-301-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080) TB		12-May-2025	30-May-2025	26-May-2025	¥	30-May-2025	26-May-2025	×
Amber VOC Vial - Sulfuric Acid (EP080)				,			,	-
MW1		27-May-2025	30-May-2025	10-Jun-2025	✓	02-Jun-2025	10-Jun-2025	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
MW2,	MW3,	27-May-2025	30-May-2025	10-Jun-2025	✓	30-May-2025	10-Jun-2025	✓
MW4,	QA							
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080)				00.14			00.14	
TB,	TS	12-May-2025	30-May-2025	26-May-2025	*	30-May-2025	26-May-2025) ¢
Amber VOC Vial - Sulfuric Acid (EP080) MW1		27-May-2025	30-May-2025	10-Jun-2025	1	02-Jun-2025	10-Jun-2025	,
Amber VOC Vial - Sulfuric Acid (EP080)		21-Way-2025	50-Way-2025	10-0011-2020	<u> </u>	02-0011-2020	10-0011-2020	✓
MW2,	MW3,	27-May-2025	30-May-2025	10-Jun-2025	1	30-May-2025	10-Jun-2025	1
MW4,	QA				_			_
	~··							

Page : 5 of 9
Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.	
Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP132B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP132)								
MW3	27-May-2025	30-May-2025	03-Jun-2025	✓	02-Jun-2025	09-Jul-2025	✓	
Amber Glass Bottle - Unpreserved (EP132)								
MW1, MW2,	27-May-2025	30-May-2025	03-Jun-2025	✓	30-May-2025	09-Jul-2025	✓	
QA								

Page : 6 of 9
Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: x = Quality Control frequency not within specification: $\sqrt{}$ = Quality Control frequency within specification.

Matrix: WATER				Evaluation	n: × = Quality Co	not within specification; ✓ = Quality Control frequency within specification	
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	30	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	18	5.56	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	30	6.67	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00		NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)			1			_	
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	18	5.56	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	30	6.67	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	7	14.29	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)	Li 000				2,00		
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	18	5.56	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG033F	2	30	6.67	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	8	12.50	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOX) by Discrete Analyser	EK059G EK057G	1	7	14.29	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
1 74 1/1 HOHOIO (OO/IVIO - OIIVI)	EPU/5(SIM)	'	'	100.00	5.00	✓	THE IN 2010 DO & ALO QO Olandard

Page : 7 of 9
Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: WATER		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification							
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
Matrix Spikes (MS) - Continued									
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Page : 8 of 9
Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenois (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	WATER	In house: Referenced to USEPA 3640 (GPC Cleanup), 8270 GCMS Capillary column, SIM mode. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions

Page : 9 of 9 Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated
			and concentrated for analysis. This method is compliant with NEPM Schedule B(3) . ALS default excludes
			sediment which may be resident in the container.
Sep. Funnel Extraction /Acetylation of	ORG14-AC	WATER	In house: Referenced to USEPA 3510 (Extraction) / In-house (Acetylation): A 1L sample is extracted into
Phenolic Compounds			dichloromethane and concentrated to 1 mL with echange into cyclohexane. Phenolic compounds are reacted
			with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis. This method is compliant with
			NEPM Schedule B(3) . ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

CHAIN OF CUSTODY

ALS Laboratory: please tick >

□ Sydney: 277 Woodpark Rd, Smithfield NSW 2176 □ Brisbane: 32 Shand St, Stafford QLD 4053
Ph. 02 8784 8555 E.samples.sydney@alsenviro.com Ph.07 3243 7222 E.samples.brisbane@alsenviro.com

Newcastle: 5 Rosegum Rd, Warabrook NSW 2304
Ph:02 4988 9433 E:samples.newcastle@alserwiro.com
Ph:07 4796 0600 E: townsville_antronmental@alserwiro.com

☐ Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenviro.com

Adelaide: 2-1 Burma Rd, Pooraka SA 5095
Ph: 08 8359 0890 E:adelaide@alsenviro.com

☐ Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com ☐ Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	RCA Australia		TURNAROUND REQUIREMENTS: Standard TAT (List due date): 4													
OFFICE:	92 Hill Street, Carrington			AT may be longer for some tests race Organics)			Custody Seal Intact? Yes No N/A									
RCA Ref No:	12513e		ALS QUOTE NO.: EN/222/24					COC SEQUENCE NUMBER (Circle) Free ice) frozen ice bricks present upon receipt? Yes No N/								
							coc: 1 Random Sample Temperature						on Rec	elpt: 4.0 °C		
PROJECT MANAGER	: Fiona Brooker	CONTACT P	H: 0408 68	7 529	,		OF:			Other	comment:					
SAMPLER: AH/ DB		SAMPLER M	OBILE: 04	10 230 644 RELINQUIS	SHED BY:	AH	RECEIV	ED BY:	R	RELINQUIS				RECEIVED BY		
COC Emailed to ALS	? (NO)	EDD FORMA	AT (or defa	ult):	ev.					Cass	17	00		30 M.		
Email Reports to: adn	ninistrator@rca.com.au + enviro@rca.	com.au		DATE/TIME			DATE/1	TME: 28	5-25	DATE/TIME	17			DATE/TIME: 1920		
Email Invoice to: as a	above			28.5.2	5-11	720) \	55		28.				280/01/39		
COMMENTS/SPECIAL	L HANDLING/STORAGE OR DISPOS	AL:														
ALS USE ONLY		PLE DETAILS Solid(S) Water(W)		CONTAINER INFORMATION				а	ttract suite p	rice)	Codes must l			Additional Information		
LAB ID	SAMPLE ID	DATE / TIME	NE MATRIX	OF ORIGIN: WCASTLE TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	W05 TRH, BTEXN, 8 Dissolved Metals	EP132B - UT PAH	РАН	Please report Naphthalene results in both BTEXN and PAH suites	EK055G Ammonia	NT-04 Nitrite + Nitrate	W-18 - TRH C6-C9/ BTEX	W-02 - 8 Dissolved Metals	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc. Environmental Division Sydney Work Order Reference ES2515744		
	MW1	27.5.25 - 11:30	w	2*500mL AG, 2*100mL AG, 2* purple vials, 1* prple plastic, 1* red plastic (filtered), 1*500mL green plastic	9	х	Х		X	X	Х					
	MW2	27.5.25 -13:20	w	1*500mL AG, 1*100mL AG, 2* purple vials, 1* prple plastic, 1* red plastic (filtered), 1*500mL green plastic	7	х	х	3	X	Х	х			MAN (155 MAC)		
	MW3	27.5.25 - 12:15	w	1*500mL AG, 1*100mL AG, 2* purple vials, 1* prple plastic, 1* red plastic (filtered), 1*500mL green plastic	7	х	х		х	х	Х			## N.49 BEDURAS ## 1		
	MW4	27.5.25 - 15:00	w	1*500mL AG, 1*100mL AG, 2* purple vials, 1* prple plastic, 1* red plastic (filtered), 1*500mL green plastic	7	х		х	Х	Х	Х			Telephone: +61-2-8784 8555		
	MW6	28.5.25 - II; OV	w	1*500mL green plastic, 1*purple plactic	2				- 1	Х	Х					
	MW10	27.5.25 -14:15	w	1*500mL green plastic, 1*purple plactic, 1*red plactic (filtered)	3					Х	х		Х			
	QA	27.5.25	w	1*500mL AG, 1*100mL AG, 2* purple vials, 1* prple plastic, 1* red plastic (filtered), 1*500mL green plastic	7	Х	х		Х	Х	х					
	ТВ	12.5-25	w	1°purple vial	1							Х				
	TS	12.5.2	w	1*purple vial	1						*	Х				
					44	5	4	, 1	5	7	7	2	1			

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2515744

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Danae Hambly

Address : PO BOX 175 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Telephone : +61 02 4902 9200 Telephone : +61-2-8784 8555
Facsimile : +61 02 4902 9299 Facsimile : +61-2-8784 8500

Project : 12513e Page : 1 of 3

CARRINGTON NSW, AUSTRALIA 2294

Order number : ---- Quote number : EN2023ROBCAR0002 (NSW Custom

BQ 2024)

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : AH/DB

Dates

Date

Delivery Details

 Mode of Delivery
 : Undefined
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 4.0'c - Ice present

Receipt Detail : No. of samples received / analysed : 9 / 9

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Volatile organic compound analysis may be compromised as sample containers contained headspace. Please contact ALS for further information.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Sydney, NATA accreditation no. 825, site no. 10911.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 29-May-2025

Page

2 of 3 ES2515744 Amendment 0 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Sample ID	Sample Container Received	Preferred Sample Container for Analysis
Dissolved Mercury by FIMS : E	G035F	
MW1	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW2	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW3	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW4	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW10	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
QA	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
Dissolved Metals by ICP-MS - S	Suite A : EG020A-F	
MW1	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW2	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW3	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW4	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MW10	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
QA	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered

Summary of S	Sample(s) and R	Requested Analysis							
process necessatasks. Packages as the determining tasks, that are included in the sampling default 00:00 on its provided, the laboratory and component Matrix: WATER **Laboratory sample**	may contain ad ation of moisture uded in the package. time is provided, the date of sampling sampling date wi	the sampling time will ng. If no sampling date ill be assumed by the ackets without a time	ete Analyser	WATER - EP132B(PAH) Ultra Trace Polynuclear Aromatic Compounds	WATER - NT-04 Vitrite and Nitrate	WATER - W-02 8 Metals	WATER - W-05 TRH/BTEXN/8 Metals	WATER - W-18 TRH(C6 - C9)/BTEXN	WATER - W-26 TRH/BTEXN/PAH/8 Metals
ID ES2515744-001		MW1	≥ ₹	≥ 5	<u> </u>	≥ ∞	≥ F	I ≥ F	≥ F
	27-May-2025 11:30		_	-	-				
ES2515744-002	27-May-2025 13:20	MW2	✓	✓	✓		✓		
ES2515744-003	27-May-2025 12:15	MW3	✓	✓	✓		✓		
ES2515744-004	27-May-2025 15:00	MW4	✓		✓				✓
ES2515744-005	27-May-2025 11:00	MW6	✓		✓				
ES2515744-006	27-May-2025 14:15	MW10	✓		✓	✓			
ES2515744-007	27-May-2025 00:00	QA	✓	✓	✓		✓		
ES2515744-008	12-May-2025 00:00	ТВ						✓	

Matrix: WATER			:- EP080
Laboratory sample ID	Sampling date / time	Sample ID	WATER BTEXN
ES2515744-009	12-May-2025 00:00	τs	✓

: 29-May-2025 Issue Date

Page

3 of 3 ES2515744 Amendment 0 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

fionab@rca.com.au

Email

Method		Due for	Due for	Samples Re	eceived	Instructions Received			
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation		
EP080: TRH Volatiles/BTEX									
ТВ	Amber VOC Vial - Sulfuric Acid	26-May-2025	26-May-2025	28-May-2025	x	28-May-2025	×		
TS	Amber VOC Vial - Sulfuric Acid	26-May-2025	26-May-2025	28-May-2025	×	28-May-2025	×		

Requested Deliverables

- EDI Format - ESDAT (ESDAT)

ADMINISTRATOR		
- *AU Certificate of Analysis - NATA (COA)	Email	administrator@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	administrator@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	administrator@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	administrator@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	administrator@rca.com.au
- Chain of Custody (CoC) (COC)	Email	administrator@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	administrator@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	administrator@rca.com.au
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	administrator@rca.com.au
ENVIRO		
- *AU Certificate of Analysis - NATA (COA)	Email	enviro@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	enviro@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enviro@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enviro@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	enviro@rca.com.au
- Chain of Custody (CoC) (COC)	Email	enviro@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	enviro@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	enviro@rca.com.au
FIONA BROOKER		
- *AU Certificate of Analysis - NATA (COA)	Email	fionab@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	fionab@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	fionab@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	fionab@rca.com.au
- Chain of Custody (CoC) (COC)	Email	fionab@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	fionab@rca.com.au

Appendix D

Summary of Results

Sample Identification		Aquatic Ecosys	tom Guidolino A	Human Health	MW1	MW2	MW3	MW4	MW6	MW10
Sample Depth (m) ^C	PQL			(Ingestion)	1.23	0.90	0.90	0.69	0.56	0.00
Date	- ' "	99% Fresh	95% Fresh	Guideline B	27/05/2025	27/05/2025	27/05/2025	27/05/2025	28/05/2025	27/05/2025
Date				Guidelille	21100/2020	21100/2020	21/00/2020			21700/2020
				Description	Grey, turbid and no odour.	Grey, turbid and no odour.	Dark grey, turbid and sulphide odour.	Turbid, dark grey, oily sheen and strong hydrocarbon odour.	Turbid, Dark yellow / orange and no odour.	Turbid, brown and no odour.
			Samp	ole Purpose	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring
			Sample o	collected by	RCA - AH/DB	RCA - AH/DB	RCA - AH/DB	RCA - AH/DB	RCA - AH/DB	RCA - AH/DB
General Waster Quality (field	readings)								
pH					7.27	6	6.1	6.1	5.13	3.98
Electrical Conductivity (mS/cm)					0.917	3.99	9.84	9.84	6.61	16.3
Benzene, Toluene, Ethylbenz	ene, Xyleı	ne (BTEX)								
Benzene	1		950	1	<1	<1	<1	<1		
Toluene	2		180	800	<2	<2	<2	<2		
Ethylbenzene	2		80	300	<2	<2	<2	<2		
meta- and para-Xylene	2		275		<2	<2	<2	<2		
ortho-Xylene	2		350		<2	<2	<2	<2		
Total Xylenes	4 (TD)			600	2	2	2	2		
Total Recoverable Hydrocarb							T		1	
TRH C ₆ -C ₁₀	20				<20	<20	<20	130		
TRH >C ₁₀ -C ₁₆	100				<100	<100	<100	232000		
TRH >C ₁₆ -C ₃₄	100				590	<100	180	248000		
TRH >C ₃₄ -C ₄₀	100				<100	<100	<100	<2860		
TRH C ₆ -C ₄₀	320	7	7		700	160	290	487280		
Polycyclic Aromatic Hydroca		•			700	100	290	407 200		
Acenaphthene	0.1	ın,		T	<0.1	<0.1	<0.1	80.4		
Acenaphthylene	0.1				<0.1	<0.1	<0.1	<47.6		
Anthracene ^D	0.1	0.01			<0.1	<0.1	<0.1	<47.6		
Benz(a)anthracene	0.1	0.01			<0.1	<0.1	<0.1	<47.6		
Benzo(a) pyrene ^D	0.05	0.1		0.01	<0.05	<0.05	<0.05	<47.6		
Benzo(b)&(j)fluoranthene	0.1	0.7		0.01	<0.1	<0.1	<0.1	<47.6		
Benzo(g,h,i)perylene	0.1				<0.1	<0.1	<0.1	<47.6		
Benzo(k)fluoranthene	0.1				<0.1	<0.1	<0.1	<47.6		
Chrysene	0.1				<0.1	<0.1	<0.1	<47.6		
Dibenz(a,h)anthracene	0.1				<0.1	<0.1	<0.1	<47.6		
Fluoranthene ^D	0.1	1			<0.1	<0.1	<0.1	60.3		
Fluorene	0.1				<0.1	<0.1	<0.1	231		
Indeno(1,2,3-c,d)pyrene	0.1				<0.1	<0.1	<0.1	<47.6		
Naphthalene	0.1		16		<0.1	<0.1	<0.1	<47.6		
Phenanthrene ^D	0.1	0.6			<0.1	<0.1	<0.1	384		
Pyrene	0.1				<0.1	<0.1	<0.1	95.5		
Metals					#					
Arsenic	1		13	10	<1	<1	<1	<1		4
Cadmium	0.1		0.2	2	<0.1	<0.1	<0.1	<0.1		0.3
Chromium	1		1	50	<1	<1	<1	<1		5
Copper	1		1.4	2000	2	<1	<1	<1		2
Lead	1	2.22	3.4	10	<1	<1	<1	4		11
Mercury ^D	0.1	0.06	0.6	1	<0.1	<0.1	<0.1	<0.1		<0.1
Nickel	1 -		11		6	15	8	2		152
Zinc	5		8		26	11	2	<5		252
Non Metallic Inorganics	1 40				#	1000	1 422	0000	7.0	600
Ammonia as N (at 20 °C)	10	pH dependent	pH dependent		560	1820	480	3890	740	200
Nitrate + Nitrite ^E	10	4	0		1730	240	1340	1350	94400	70

All results are in units of $\mu g/L$

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

Ecological guidelines in *italics* are low level reliability guidelines

Ecological arsenic guideline based on As (V) for fresh, the lowest of presented guidelines.

Toll Group

Groundwater Monitoring Report Toll Tomago Site RCA ref:12513e-223/0, June 2025 Drinking Water arsenic guidelines are based on total arsenic Guidelines for chromium are based on Cr (VI)

Ecological guidelines for mercury are based on inorganic mercury Drinking water guidelines for mercury are based on total mercury

Results for TRH have been compared to TPH guidelines

Results shown in shading are in excess of the 99% aquatic ecosystems guidelines Results shown in **BOLD** are in excess of the 95% aquatic ecosystems guidelines

Results shown in <u>underline</u> are in excess of the human health (ingestion) guideline

Where summation required (Xylene, TRH, PAH) calculation includes components reported as non detected as 1/2 PQL

Duplicate result used for nickel and ammonia due to poor RPD

Prepared by: AH Checked by: FB

Page 1 of 1 RCA Australia

^A % Protection Level for Receiving Water Type.

^B Australian Drinking Water Guidelines.

^C Sample depths presented are as encountered at top of pipe or at ground level if pipe below ground prior to commencement of sampling

D Bioaccummulative Compounds

^E Guidelines for Lowland (Coastal) Rivers in NSW