

GROUNDWATER MONITORING – NOVEMBER 2024
TOLL SITE TOMAGO

Prepared for TOLL GROUP
Prepared by RCA Australia
RCA ref 12513e-216/0
DECEMBER 2024

RCA AUSTRALIA

ABN 53 063 515 711

92 Hill Street, CARRINGTON NSW 2294

Telephone: +61 2 4902 9200 Email: <u>administrator@rca.com.au</u> Internet: www.rca.com.au

This document is and shall remain the property of RCA Australia. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission supplied at the time of proposal. Unauthorised use of this document in any form whatsoever is prohibited.

	DOCUMENT STATUS								
Rev	Rev Comment Author Reviewer Approved for Issue (Project Manager)								
No	Comment	Addioi	Keviewei	Name	Signature	Date			
/1	Final	M Hayyat	F Brooker	M Hayyat	of of	20.12.24			

	DOCUMENT DISTRIBUTION							
Rev No	Copies	Format	Issued to	Date				
/0	1	Electronic (email)	Toll Group Stefan Nightingale <u>stefan.nightingale@tollgroup.com</u> Emma Boyce-Bacon <u>Emma.Boyce-Bacon@tollgroup.com</u> Annastasia Denigan <u>Annastasia.Denigan@tollgroup.com</u>	20.12.24				
/0	1	Electronic report	RCA – job archive	20.12.24				

Contents

1	INTRODUCTION	1
2	SITE IDENTIFICATION AND DESCRIPTION	2
3	FIELDWORK	2
4	QUALITY ASSURANCE/QUALITY CONTROL	4
5	RESULTS	5
6	DISCUSSION	9
7	CONCLUSIONS1	0
8	LIMITATIONS1	1
REF	ERENCES1	1
GLO	SSARY1	2
APP	ENDIX A	
	DRAWING	
APP	ENDIX B	
	CALIBRATION RECORD AND FIELD SHEETS	
APP	ENDIX C	
	QUALITY ASSURANCE REVIEW AND LABORATORY REPORT SHEETS	

APPENDIX D

SUMMARY OF RESULTS

RCA ref 12513e-216/0

20 December 2024

Toll Group Old Punt Road Tomago NSW 2322

Attention: Stefan Nightingale

CC: Emma Boyce-Bacon, Annastasia Denigan

Geotechnical Engineering

Engineering Geology

Environmental Engineering

Hydrogeology

Construction Materials Testing

Environmental Monitoring

Noise & Vibration

Occupational Hygiene

GROUNDWATER MONITORING REPORT – NOVEMBER 2024 TOLL SITE, TOMAGO

1 INTRODUCTION

This report presents the findings of a groundwater monitoring round undertaken at the Toll Group's (Toll) Tomago site as part of the continuation of a monitoring programme being implemented at the site.

A total of eleven (11) monitoring wells are located at the site, however one (1) well (MW8) has its entire screened interval situated below the groundwater surface and was replaced (by MW8a) and one (1) well (MW5) is inaccessible under a shed / container. As such, nine (9) of the total 11 groundwater wells are used for long term monitoring. Four (4) of the wells are situated in close proximity to the current and former petroleum storage area and the remainder are situated around the site. The locations of the wells are included on **Drawing 1**, **Appendix A**.

Historical monitoring has identified the presence of hydrocarbons and metals in some wells and ammonia in all wells. The Environment Protection Licence (EPL #20125) for the site was amended, formally in March 2022, to include monitoring of selected groundwater wells at the site. The current EPL requires the following six-monthly monitoring in relation to groundwater:

- Hydrocarbons at MW1, MW2, MW3 and MW4.
- Ammonia, electrical conductivity (EC), nitrate, nitrite and standing water level from MW1, MW2, MW3, MW4, MW6 and MW10.
- Metals at MW1, MW2, MW3, MW4 and MW10.

This report presents the findings of the November 2024 round of monitoring implemented in accordance with the EPL as requested by Stefan Nightingale of Toll. It is noted that additional works were intended to be undertaken in accordance with a Sampling and Analysis Quality Plan (SAQP, Ref [1]), issued under section 8 of the EPL and endorsed by the appointed NSW EPA accredited Contaminated Land Site Auditor however that there were delays associated with the Toll approval process such that additional wells have not yet been installed.

2 SITE IDENTIFICATION AND DESCRIPTION

The site is described as 12 Old Punt Road, Tomago and Lot 7 DP562394. The site is currently used for the storage of ammonium nitrate, heavy vehicle storage and maintenance works.

Additional site details are shown in Table 1.

Table 1Site Details

Current zoning (Ref [2])	E4 – General Industrial		
Current use	Storage of Ammonium Nitrate		
Size of site	2.59ha		
Land use to the: North	Light industrial – petroleum fuel dispensing facility		
South	Light industrial		
East	Old Punt Road, light industrial		
West	Vacant, vegetated land		
Nearest sensitive receptor (human health)	Adjacent residence (although considered to be used as a commercial property) and onsite workers		
Nearest sensitive receptor (environmental)	Unnamed creek approximately 900m to north west, marsh lands approx. 700m to the west and unnamed creek approximately 1km to south west – both of which connect to Hunter River.		

Drawing 1, **Appendix A** shows the locality and the layout of the site.

3 FIELDWORK

A team of environmental personnel experienced in the sampling and handling of potentially contaminated groundwater undertook monitoring of nine (9) wells on 26 and 27 November 2024 as per the EPL monitoring requirements. The scope of work included:

• Field screening of volatile hydrocarbon vapours in the air space around each well and in the well head space using a photoionisation detector (PID).

- It is noted that none of the wells have a gas sampling cap and as such field screening the air space around the wells was undertaken prior to removing the groundwater well cap and while screening in the well head space was undertaken by immediately inserting the PID probe into the well head space after removal of the groundwater cap. The field screening readings are indicative, noting that there was likely to be some loss of volatiles during the well cap removal process such that the PID readings may not be fully representative of the volatile hydrocarbon vapours within the well head space.
- Dipping of all accessible wells to measure the depth to the groundwater and presence
 of any phase separated light non-aqueous phase liquid (LNAPL). No assessment for
 phase separated dense non-aqueous phase liquid (DNAPL) was undertaken.
 - MW5 could not be located due to being undercover pavement or a container and MW8 was excluded from the scope.
- Placement of a low flow pump into the well and purging until pH and EC readings stabilised. It is noted that the groundwater within some of the wells was lowered during the purging and sampling process and the recharging of groundwater in these wells was very slow. Noting that due to technical issue with low flow pump, samples MW1 and MW4 were collected using a bailer.
 - A new bladder was utilised for each well.
- Following the stabilisation of pH and EC readings, additional field readings of turbidity, dissolved oxygen, temperature and salinity were recorded, and a sample was collected into laboratory prepared bottles and then placed into an insulated container on ice.
 - Samples were 0.45μm filtered prior to preservation for metals analysis.
- The samples were transported to the NATA accredited analytical laboratory and analysed for a suite of chemicals which included benzene, toluene, ethylbenzene, xylene, naphthalene (BTEXN), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury), ammonia and oxidisable nitrogen.

The relevant calibration sheet for the water quality meter and field sheets are attached in **Appendix B**.

The recorded PID readings were 0.0ppm at all wells with exception of MW4; where the reading was 4.1ppm at the well surface prior to opening the cap and 64.2ppm inside the well.

Groundwater was measured to be at between 0m (i.e. at ground surface, MW10) and 1.38m (MW7) below the surface.

Visual or olfactory indications of hydrocarbon contamination were identified at well MW4 only during sampling. LNAPL was identified in well MW4 during gauging and sampling.

Due to the use of designated tubing and bladders, the decontamination of the sampling equipment comprised the rinsing of the pump housing, interface dip meter, bailer, and Horiba after every sample with potable water and distilled water.

4 QUALITY ASSURANCE/QUALITY CONTROL

RCA has reviewed the quality assurance and control in **Appendix C** and assessed the data as follows:

Accuracy

- The accuracy of the data has been assessed by internal means (surrogates, laboratory control samples, matrix spikes and method blanks) as being generally acceptable. There were minor non-compliance that were not considered significant to the characterisation of the water quality.
- The accuracy of the data has not been assessed by external means due to the extent of the scope.

As such the accuracy of the data set is considered acceptable to the extent it was assessed.

Precision

- The precision of the data has been assessed by internal means (duplicates) as being generally acceptable. There was one minor noncompliance which was not considered to indicate significant uncertainty.
- The precision of the data has been assessed by external means (intralaboratory duplicates) as being generally acceptable. There were four (4) results which indicate potential uncertainty; three (3) duplicate results have been used for conservative assessment of the contamination status. The fourth result was considered to be conservative.

As such the precision of the data set is considered acceptable.

Completeness

- All data that was sought during the investigation was able to be retrieved.
- Chain of custody were completed for all samples.

As such, completeness is considered 100% for the collected samples.

Representativeness

• This assessment has considered groundwater contaminant concentrations on-site. The method of sampling was appropriate for the sampling of volatile compounds within water for the majority of wells. The use of the hand bailer to sample MW1 and MW4, due to the failure of the low flow pump apparatus, may have resulted in the loss of volatile hydrocarbons and caused the inclusion of sediment within the samples however in the absence of significant volatile hydrocarbons in any MW1, and the filtering of samples for metals analysis, it is not considered that the sampling methodology had a significant impact. The volatile hydrocarbon concentrations in MW4 were decreased by a factor of ten (10) from the previous sampling however the semi-volatile compounds were decreased by a factor of 100 and as such it is not considered likely that the sampling methodology was responsible for the loss of a significant proportion of volatile hydrocarbons.

As such the groundwater data is considered representative of the concentrations at the site.

Comparability

- Works were undertaken by personnel experienced in the sampling of potentially contaminated groundwater. The methodology of the majority of groundwater sampling is consistent with the majority, and the most recent, groundwater sampling techniques.
- All samples were appropriately preserved for the requested analysis and all groundwater samples were kept on ice or in the refrigerator between sampling and analysis.
- All laboratory analyses have been conducted by NATA accredited methodologies that comply with the international standard methods.
- Comparable analytes shown some concurrence between analytical results. The
 detected concentrations show some concurrence with field observations of the
 presence of contamination.

As such it is considered that the comparability of the data is appropriate.

It is therefore considered that the data obtained from this testing is generally accurate and adequately reliable in as far as it can be ascertained.

5 RESULTS

Groundwater results from this sampling round are compared to the relevant criteria in **Appendix D**; the following presents a summary.

Groundwater depths of monitoring wells since 2017 were shown in **Figure 1** below. The groundwater MW10 remains as 0m (at ground level) since the December 2021 monitoring round. Groundwater depths for all the remaining wells generally decreased, with the exception of GW6, which increased slightly since the previous round in May 2024.

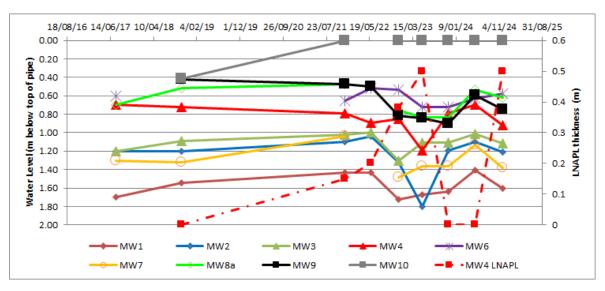


Figure 1 Groundwater levels 2017-2024.

Groundwater contours were generated from the water levels using surveyed data for the wells and indicates a westerly flow direction as presented on **Drawing 1**, **Appendix A**, noting that RCA have excluded MW10 based on the understanding that it is representative of a different aquifer and have used the ground level of MW1 due to a change in the height of the pipe above the ground since the survey. The flow direction is consistent since November 2023.

With regards chemical concentrations:

- pH was 3.94 at MW10 and ranged from 5.16 at MW6 to 6.89 at MW1.
- Electrical conductivity ranged from 1.28mS/cm at MW1 to 10.1mS/cm at MW4 and was 17.2mS/cm at MW10.
- BTEX were not detected in monitoring wells MW1, MW2, MW3 or MW4 and as such
 concentrations are below the ecological (Ref [3]) and the drinking water criteria
 (Ref [4]). The results are generally consistent with previous results with exception of
 MW4 well.
- TRH was detected in monitoring wells MW1, MW2, MW3 and MW4 and as such are in excess of the ecological criterion (Ref [3]). The results of MW1, MW2 and MW3 represent an increase (to between 59-80%) of the May 2024 results whereas the MW4 results represent less than 0.30% of the previous May 2024 result. All are within the historical data ranges (refer Figure 2 below).
- PAH compounds were identified in MW1, MW2, MW3 and MW4. Results are less than
 the ecological criteria except the naphthalene and phenanthrene concentrations at
 MW4. Furthermore the anthracene, benzo(a)pyrene and fluoranthene in this well are
 inferred to be in excess of the ecological criteria although cannot be distinctly quantified
 due to the raised detection limit.

Where the results can be quantified, the November 2024 results represent between 0.74-1.23% of the May 2024 result.

No anthracene or benzo(a)pyrene was detected in MW1, MW2 or MW3 however the detection limit of these compounds is in excess of the ecological criterion and drinking water criterion respectively.

- Metals were detected in at least one of the five (5) monitored wells (MW1, MW2, MW3, MW4 and MW10).
 - Arsenic was detected in MW1, MW2, MW3, MW4 and MW10; all concentrations were below the ecological and drinking water criteria and are within the historical ranges.
 - Cadmium was detected only in MW10; the concentration was equal to the ecological criterion and less than the drinking water criterion.
 - Chromium was detected only in MW4 and MW10; concentrations in excess of the hexavalent chromium ecological criterion and less than the drinking water criterion. Both concentrations are increased when compared to the May 2024 monitoring results; the MW4 concentrations are equal to the maximum within the historical range whereas the MW10 concentration is the highest in the historical range (of the previous maximum of 3µg/L).
 - Copper was detected only in MW1 and MW10; concentrations in excess of the
 ecological criterion and less than the drinking water criterion. The MW1
 concentration has slightly decreased whereas the MW10 concentration has
 increased when compared to the May 2024 monitoring results; both concentrations
 are within the historical ranges.
 - Lead was detected only in MW4 and MW10; concentrations in excess of the
 ecological criterion at MW10 only and less than the drinking water criterion. The
 MW4 concentration decreased and the MW10 remained the same when compared
 to the May 2024 monitoring results; both are within the historical ranges.
 - Nickel was detected in all five (5) analysed wells; concentrations are in excess of the ecological criterion at MW2, MW3 and MW10. The concentrations at MW2, MW3 and MW10 increased, decreased at MW4 and the remained the same at MW1 when compared to the May 2024 monitoring results. The concentration for MW2 is the highest in the historical range however the MW3 and MW10 concentrations are within the historical ranges.
 - Zinc was detected in all wells; concentrations are in excess of the ecological criterion at all wells with the exception of MW1. The concentrations were decreased at MW1 and MW10, increased at MW2, MW3 and MW4 when compared to the May 2024 monitoring results. The concentration for MW2 is the highest in the historical range and the concentration for MW4 is the lowest in the historical range; all other concentrations are within the historical ranges.
- Ammonia was detected in all wells as presented in Figure 3; RCA have assigned the
 criterion based on the pH of the water at each location as per Table 2 below and only
 the results of MW4 are in the excess of the relevant criterion

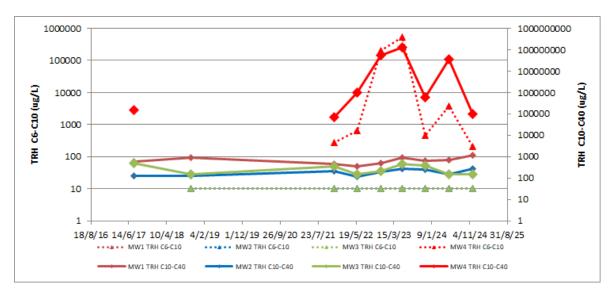


Table 2Ammonia Criterion based on pH

Sampling Location	Measured pH	pH on which Ammonia Criterion Based	Ammonia Criterion
MW1	6.89	6.9	2,260
MW2	5.9	6	2,570
MW3	5.98	6	2,570
MW4	6.34	6.4	2,490
MW6	5.16	6	2,570
MW10	3.94	6	2,570

The concentrations at MW1, MW3 and MW4 increased to a range of 237% (MW3) to 781% (MW1), while decreased at MW2, MW6 and MW10 to a range of 52% (MW2) to 86% (MW10) when compared to those from May 2024 monitoring round. All results were within the historical ranges with the exception of the MW2 and MW10 results which are the lowest in the historical ranges.

Oxidisable nitrogen (nitrate + nitrite) was detected in MW1, MW3, MW4 and MW6 as presented in Figure 3; concentrations are in excess of the ecological criterion at MW1 and MW6 only. The results represent a significant decrease (to 1-79%) compared to the previous May 2024 monitoring round with exception of MW2 for which there was an increased detection limit for the non-detected result. The concentrations are within the historical data ranges.

Figure 2 TRH Concentrations 2017-2024 (noting that 2017 data does not include TRH C₆-C₁₀ and that MW1, MW2 and MW3 TRH C₆-C₁₀ has not been detected such that all data is represented by the MW3 series).

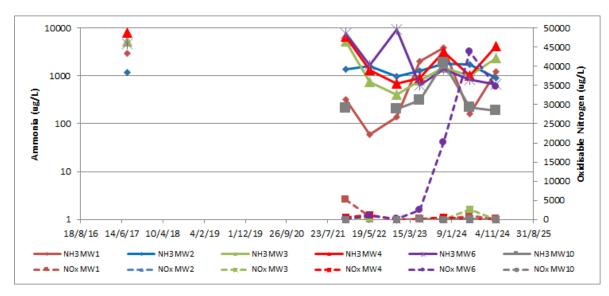


Figure 3 Ammonia and Oxidisable Nitrogen Concentrations 2017-2024.

6 DISCUSSION

Based on the results it is considered that groundwater is impacted by:

- Hydrocarbons in the immediate vicinity of the petroleum infrastructure and historical spill, particularly MW4 which is in close proximity (<5m) from the refuelling area and associated bowser.
- Ammonia and nitrogen in the northern part of the site, noting that due to the slightly acidic pH that the ammonia concentrations are not in excess of the criterion except for MW4.

A historical surface hydrocarbon spill occurred at the site and MW1, MW2 and MW3 were installed as part of remediation / validation works. While hydrocarbons have been detected in these wells, the concentrations are minor compared to those detected in MW4. The contamination is considered to be indicative of a diesel product however no specific identification analysis has been undertaken. The cause of the significant decrease in the hydrocarbon concentrations at MW4 is unknown as no works have been undertaken on site which would have reduced the concentrations. It is noted that the cause of the increase in hydrocarbon concentrations (from 2021 to May 2023) at MW4 is also unknown in the absence of any known leak of the site's current petroleum facilities.

The highest ammonia concentration is at MW4, considered the upgradient of the sampled wells based on the inferred groundwater flow (refer **Drawing 1**, **Appendix A**) indicated that an offsite source of ammonia is possible, noting that there is significant variation within the aquifer. The receiving water is considered likely to be the Hunter River however groundwater may first discharge into the wetland area to the north and west of the site or into one of the unnamed creeks to the north west and south west.

The highest oxidisable nitrogen is at the downgradient well however these results are a factor of 100 higher than the highest of the other wells (MW1, MW2, MW3, MW4) in the same aquifer. As such it is inferred that there may be a localised condition at the location of MW6 which is the cause of the high concentrations.

Ammonium nitrate is stored at the site however current practices are such that unless there is an accident that results in the breakage of a bulk bag there should not be any product leakage to the ground.

The metals concentrations in the groundwater are in excess of the ecological criteria, however in the absence of any specific source of metals except potentially lead in association with the petroleum contamination, it is not considered that the site is the likely source of the detected metals. Nickel and zinc are the only metals considered to represent a potential risk to the environment. No further action is considered to be necessary with regards to metals concentrations unless concentrations indicate a potential source of contamination at the site.

7 CONCLUSIONS

This report has presented the findings of groundwater monitoring undertaken at the Toll site situated in Tomago which is currently used for storage of bulk ammonium nitrate as well as storage and maintenance of the heavy vehicle fleet.

A total of six (6) groundwater monitoring wells were sampled and chemically analysed in November 2024 in accordance with the EPL requirements. The collected samples were analysed for hydrocarbons, metals and nitrogen compounds including ammonia, in general accordance with the EPL.

LNAPL was identified at MW4 during field gauging and sampling however dissolved hydrocarbon concentrations had significantly decreased compared to the results from May 2024. Hydrocarbon contamination at MW1 and MW2 had increased by 59% and 80% respectively, while it remained unchanged at MW3.

Ammonia was detected at all wells however due to the acidic pH of the water was in excess of the pH-based guideline (Ref [3]) at MW4 only. Oxidisable nitrogen was detected in four (4) wells and in excess of the guidelines at MW1 and MW6 only. The source is considered to be historical use of the site, given that current site practices appear to be suitable for the minimisation of potential ammonia contamination from the storage of ammonium nitrate at the site, however the magnitude of the oxidisable nitrogen at MW6 is considered to indicate a localised impact which may or may not be associated with the use of the site. It is noted that the NSW EPA is satisfied with Toll's 'debagging procedure' and has incorporated its implementation to the existing EPL.

Concentrations of various metals, from copper only at MW1 to five (5) metals at MW10 were in excess of the ecological guidelines (Ref [3]) at all bores. The site is not considered the source due to the absence of any known metal-contaminating activities.

The next groundwater monitoring event will be required in accordance with the EPL and as such will be undertaken in May 2025. Additional works as outlined in the SAQP (Ref [1]) may be undertaken.

8 LIMITATIONS

This report has been prepared for Toll Group in accordance with an agreement with RCA Australia (RCA). The services performed by RCA have been conducted in a manner consistent with that generally exercised by members of its profession and consulting practice.

This report has been prepared for the sole use of Toll Group. The report may not contain sufficient information for purposes of other uses or for parties other than Toll Group. This report shall only be presented in full and may not be used to support objectives other than those stated in the report without written permission from RCA Australia.

The information in this report is considered accurate at the date of issue with regard to the current conditions of the site. Conditions can vary across any site that cannot be explicitly defined by investigation. Environmental conditions including contaminant concentrations can change in a limited period of time. This should be considered if the report is used following a significant period of time after the date of issue.

Yours faithfully

RCA AUSTRALIA

Muhammad Hayyat Environmental Engineer BEng, MEng (Env)

REFERENCES

- [1] RCA Australia, Sampling and Analysis Quality Plan for Further Groundwater Assessment Works, Toll Tomago Site, RCA ref 12513d-410/1, July 2024.
- [2] Port Stephens Council, Port Stephens Local Environment Plan 2013 under the Environmental Planning and Assessment Act 1979 as updated 22 March 2024.
- [3] ANZG, Australian and New Zealand Guidelines for Fresh and Marine Water Quality Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia., August 2018. Available at www.waterquality.gov.au/anz-guidelines.
- [4] National Health and Medical Research Council, *Australian Drinking Water Guidelines*, 2011.
- [5] NEPC, National Environment Protection (Assessment of Site Contamination) Measure, 1999 as amended 2013.
- [6] Standards Australia, Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, AS 4482.1-2005.

GLOSSARY

ASC NEPM National Environment Protection (Assessment of Site

Contamination) Measure.

Intralaboratory A sample split into two and sent blind to the sample laboratory for

comparative analysis.

kg kilogram, 1000 gram.

LEP Local environment plan. A planning tool for the Local Government.

μg microgram, 1/1000 milligram.

mg milligram, 1/1000 gram.

NAPL Non-aqueous phase liquid. This can be lighter than water

(LNAPL), or more dense than water (DNAPL).

NEPC National Environment Protection Council.

NHMRC National Health and Medical Research Council.

NSW EPA NSW Environment Protection Authority – made a separate entity in

2011 to regulates the contaminated land industry.

PID Photoionisation detector. Measures volatile gases in air or

emanating from soil or water.

PQL Practical Quantitation Limit.

QA Quality Assurance.

QC Quality Control.

RPD Relative Percentage Difference.

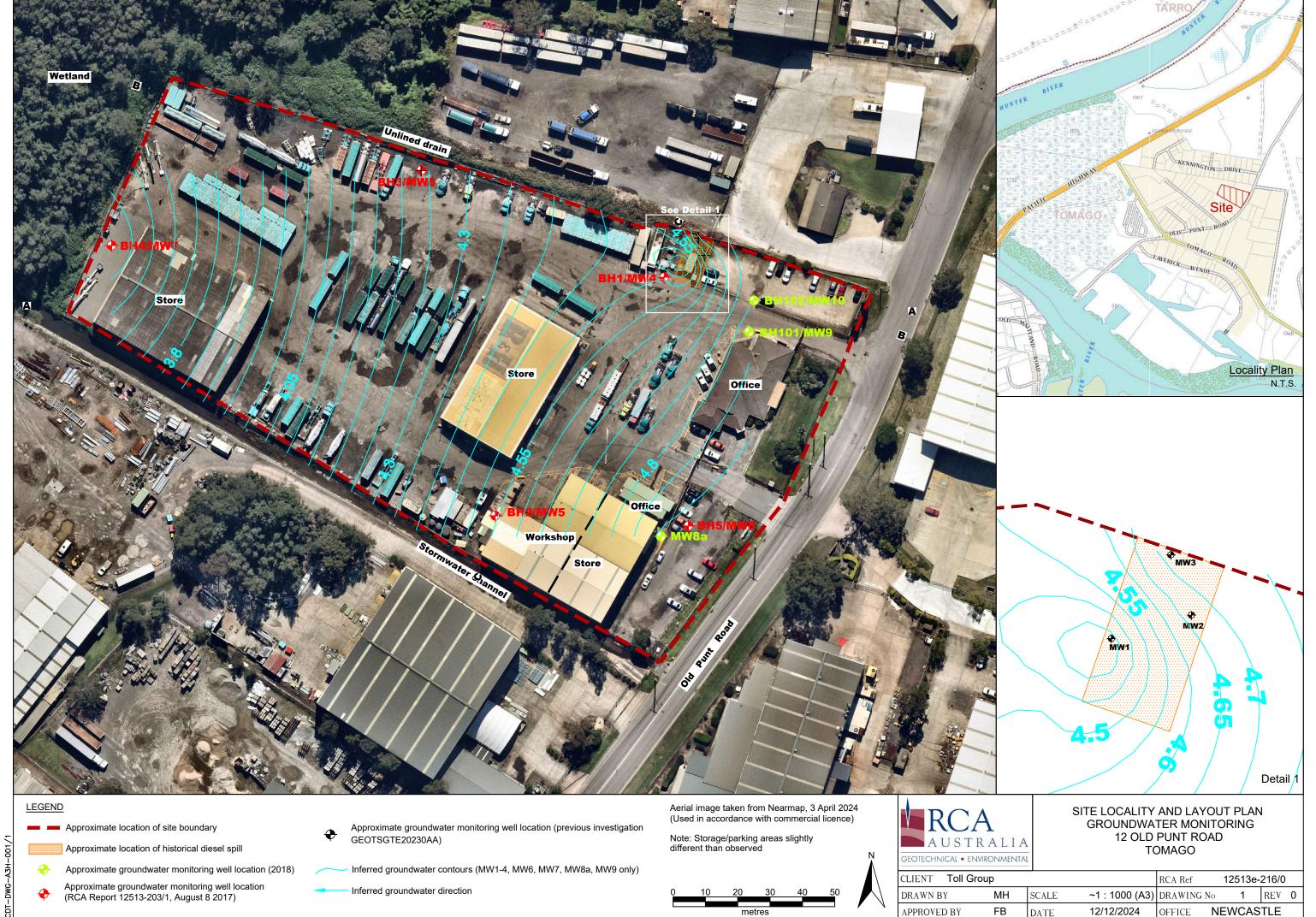
Chemical Compounds

BTEXN Benzene, toluene, ethylbenzene, xylene, naphthalene.

PAH Polycyclic aromatic hydrocarbons. Multi-ring compounds found in

fuels, oils and creosote. These are also common combustion

products.


TPH Total petroleum hydrocarbons.

TRH Total recoverable hydrocarbons

Appendix A

Drawing

Appendix B

Calibration Record and Field Sheets

SERVICE & CALIBRATION REPORT Water Quality Meter

Customer Details:Job NumberDateRCA24094430/09/2024

92 Hill Street Carrington Attn: Kenny Yan

Instrument Model: Instrument Serial Number:

HORIBA U-52/10m ☑ 1PH7HSWB 2019

Multi-Parameter Water Quality Meter

Fault Report

Requires service/calibration.

Repairs Carried Out

Replaced DO membrane. Refilled pH reference electrode. Cleaned all sensors. Re-calibrated all sensors as follows:

<u>Calibration</u> (in accordance with manufacturer's specifications):

Parameter - unit	Before Calibration	Calibration Value	After calibration	Comment
рН (рН)	7.25	7.01	7.01	Pass
рН (рН)	3.99	4.00	4.00	Pass
ORP (mV)	227	225	225	Pass
Conductivity (mS/cm)	0.000	0.000	0.000	Pass
Conductivity (mS/cm)	0.727	0.718	0.718	Pass
Conductivity (mS/cm)	6.74	6.67	6.67	Pass
Conductivity (mS/cm)	59.1	58.6	58.6	Pass
Turbidity (NTU)	0.0	0.0	0.0	Pass
Turbidity (NTU)	2.1	8.0	8.0	Pass
Turbidity (NTU)	82.7	80.0	80.0	Pass
Turbidity (NTU)	455	400	400	Pass
D.O. zero (mg/L)	0.00	0.00	0.00	Pass
D.O. zero (mg/L)	10.14mg/L @ 21°C	9.12mg/L @21°C	9.12mg/L @21°C	Pass
Temperature (°C)	20.01°C	19.8°C	19.8°C	Pass

Sensors:

pH Glass Electrode	pH Ref Electrode	ORP Electrode	DO Electrode
345078	WGTAD2NV	NH00S3C6	X3H6CF5A

Comments:

MAKE SURE the pH reference electrode is refilled with soln #330 regularly. If the #330 soln solidifies inside the pH reference electrode, remove the liquid junction cap (flat black rubber cap with wick in the middle) and rinse out the old solution with distilled water. Then refill with fresh HORIBA soln # 330 and refit the liquid junction cap. Please read the notes on pH maintenance.

Calibration carried out by:

Tony Fincher

AUSTRALIAN SCIENTIFIC PTY LTD

11 McDougall Street, Kotara, NSW, 2289

TEL: 1800 021 083

E-mail: sales@austscientific.com.au www.austscientific.com.au

ENGINEERING FIELD SHEET

WATER GAUGING RECORD

CLIENT: Toll Group	DATE: 26.11.2024
PROJECT: Groundwater Monitoring Programme	PROJECT No: 12513e
LOCATION: Toll Tomago Site	CLIENT REF:
BORE OR LOCATION ID: MW1	
TIME: 9.05 Au TO 9.10 A	h
27/3:23)	the same and
5 4 5	EIGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL:	_ PID SURFACE (ppm):
DEPTH TO AQUIFER: 1.60M	PID IN WELL (ppm):
BORE OR LOCATION ID: MW2	
TIME: 9.10 Au TO 9.15 Au	
BORE DEPTH: 2.88 (m TOP) HE	GIGHT ABOVE GROUND LEVEL: 6.6m
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER: 1.21 m	PID IN WELL (ppm):
BORE OR LOCATION ID: MW3	
TIME: 9.15 Au TO	
BORE DEPTH: 2.83 (m TOP) HE	IGHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER: 1.12 M	PID IN WELL (ppm):
BORE OR LOCATION ID: MW4	
TIME: 11.20 fr TO 11.251	A_
BORE DEPTH: 3.23 (m GL)	IGHT ABOVE GROUND LEVEL:A
DEPTH TO LNAPL: Same agressfor.	PID SURFACE (ppm):
DEPTH TO AQUIFER: 0.92 M	PID IN WELL (ppm): 64.2
BORE OR LOCATION ID: MW5	+ lound
TIME: TO	not found
POPE DEDTH:	OUT A DOVE OF OUR DESCRIPTION
	GHT ABOVE GROUND LEVEL:
DEPTH TO LNAPL:	PID SURFACE (ppm):
DEPTH TO AQUIFER:	PID IN WELL (ppm):
. + Pores dept	a frown Top of pipe.

RCA Australia	Sampled by: MM/	SH	Date: 26/1-24

BORE OR LOCATION ID: MW6		
TIME: 10.03 A TO		~ 1 1
BORE DEPTH: 2.23 (m GL)	HEIGHT ABOVE GROUND LEVEL:	NH
DEPTH TO LNAPL:	PID SURFACE (ppm):	0
DEPTH TO AQUIFER: 0.58	PID IN WELL (ppm):	0
BORE OR LOCATION ID: MW7		
TIME: 9.50 Au TO 10 Au		. 4
BORE DEPTH: 3.0/m (m GL)	HEIGHT ABOVE GROUND LEVEL:	NA
DEPTH TO LNAPL:	PID SURFACE (ppm):	0
DEPTH TO AQUIFER: 1.38M	PID IN WELL (ppm):	<i>></i>
BORE OR LOCATION ID: MW8a		•
TIME: 9.41 Au TO 9.4	5 Am	
BORE DEPTH: 1.35m (m GL)	HEIGHT ABOVE GROUND LEVEL:	MA
DEPTH TO LNAPL:	PID SURFACE (ppm):	0
DEPTH TO AQUIFER: 662M	PID IN WELL (ppm):	0
BORE OR LOCATION ID: MW9		***************************************
TIME: 935An TO 9.4	OAn	
BORE DEPTH: 2.86 (m GL)	HEIGHT ABOVE GROUND LEVEL:	NA
DEPTH TO LNAPL:	PID SURFACE (ppm):	
DEPTH TO AQUIFER: 0.75m	PID IN WELL (ppm):	0
BORE OR LOCATION ID: MW10		3.70
TIME: 9.30 Ar TO 9.35		
BORE DEPTH: 2-88 (m GL)	HEIGHT ABOVE GROUND LEVEL:	NA
DEPTH TO LNAPL:	PID SURFACE (ppm):	0
DEPTH TO AQUIFER: worth at surf	PID IN WELL (ppm):	0
/		

RCA Australia	Sampled by:	Date:

ENGINEERING FIELD SHEET

WATER SAMPLING RECORD

Un-preserved Preserved: Acid (H ₂ SO ₄) Acid (HNO ₃) Alkaline (NaOH) Filtered TESTS REQUIRED: Refer to Each Location BORE OR LOCATION ID: MW1 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, model of the No. ph Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C)	LOCATION: Toll Tomago Site WATER METER USED: LOCATION: LOC	CLIENT:	Toll G	Group		D D	ATE: 26-11	2.9
WATER METER USED: METHOD OF SAMPLING: PRESERVATION & STORAGE (TICK): Field Temp Chilled (<4°C) Froze Un-preserved Preserved: Acid (H ₂ SO ₄) Acid (HNO ₅) Alkaline (NaOH) Filtere TESTS REQUIRED: Refer to Each Location MW1 TIME: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: Check No. PH Conductivity (mS/cm) Turbidity Dissolved O, (mg/L) Temperature (*C) Salinity (* Sample Appearance: Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: To RESULTS OF WATER QUALITY CHECK Check No. PH Conductivity (mS/cm) Turbidity Dissolved O, (mg/L) To VOLUME PURGED: Check No. PH Conductivity (mS/cm) Turbidity Dissolved O, (mg/L) Temperature (*C) Salinity (* Sa	WATER METER USED: METHOD OF SAMPLING: PRESERVATION & STORAGE (TICK): Un-preserved Preserved: Acid (H ₂ SO ₄) Acid (HNO ₃) Alkaline (NaOH) Fitter TESTS REQUIRED: Refer to Each Location NOUME PURGED: TIME: TO RESULTS OF WATER QUALITY CHECK Check No. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, nounce of the conductivity (mS/cm) To RESULTS OF WATER QUALITY CHECK Check No. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, nounce of the conductivity (mS/cm) To RESULTS OF WATER QUALITY CHECK Check No. Ph Conductivity (mS/cm) To RESULTS OF WATER QUALITY CHECK Check No. Ph Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) To RESULTS OF WATER QUALITY CHECK Check No. Ph Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (11 2 3 1 2 3 2 3 3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PROJECT:	Grou	ndwater Monitoring P	rogramme	P	ROJECT No:	12513e
METHOD OF SAMPLING: PRESERVATION & STORAGE (TICK): Field Temp Chilled (4°C) Froze Un-preserved Preserved: Acid (HsSo4) Acid (HNO4) Alkaline (NaOH) Filtere TESTS REQUIRED: Refer to Each Location MVI ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: Check No. pH Conductivity (ms/cm) To VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite,	METHOD OF SAMPLING: PRESERVATION & STORAGE (TICK): Field Temp Acid (Hasoa) Acid (HNos) Alkaline (NaOH) Filter TESTS REQUIRED: Refer to Each Location MV1 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, n TIME: Check No. pH Conductivity (mS/cm) To VOLUME PURGED: Time: Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, n Time: VOLUME PURGED: To VOLUME PURGED: Time: To VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) To VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity To VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity To VOLUME PURGED: Time: 2	LOCATION:	Toll T	omago Site	t	С	LIENT REF:	
PRESERVATION & STORAGE (TICK): Field Temp Chilled (<4°C) Froze Un-preserved Preserved: Acid (H ₂ SO ₄) Acid (HNO ₃) Alkaline (NaOH) Filtere TESTS REQUIRED: Refer to Each Location SORE OR LOCATION ID: MW1 TIME:	PRESERVATION & STORAGE (TICK): Un-preserved Preserved: Acid (H ₂ SO ₄) Acid (H ₂ NO ₅) Alkaline (NaOH) Filter TESTS REQUIRED: Refer to Each Location **BORE OR LOCATION ID: MW1 TIME: ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, n VOLUME PURGED: **PRESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Deplicate/Equipment Wash Identification and Other Remarks: **BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, n TIME: 12.10 TO VOLUME PURGED: **RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **PRESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **PRESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) **Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C)	WATER MET	ER USED	o: - on:	Wa.		I (a**	
Un-preserved Preserved: Acid (HzSO4) Acid (HNO3) Alkaline (NaOH) Filtered TESTS REQUIRED: Refer to Each Location SORE OR LOCATION ID: MW1 TIME: ACID TO ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, model of the preserved of the preserve	Un-preserved Preserved: Acid (H ₂ SO ₄) Acid (HNO ₃) Alkaline (NaOH) Filter TESTS REQUIRED: Refer to Each Location Refer to Each Location Refer to Each Location Refer to Each Location Results of Location Results of Water Quality Check Results of Water Quality Check Results of Water Quality (HSCm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (1	METHOD OF	SAMPLI	NG: 604	flow	Dym!	9.	
TESTS REQUIRED: Refer to Each Location MORE OR LOCATION ID: MW1	TESTS REQUIRED: Refer to Each Location Control December Dec	PRESERVAT	ION & ST	ORAGE (TICK):	Field Temp	Chilled	d (<4°C)	Frozei
BORE OR LOCATION ID: MW1 TIME:	BORE OR LOCATION ID: MW1 TIME: VOLUME PURGED: Check No. pH Conductivity (mS/cm) Turbidity Dissolved O, (mg/L) Temperature (*C) Salinity (*I*) 11	120				Acid (HNO ₃)	Alkaline (NaOH)	Filtere
RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) 1/2	RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved 0, (mg/L) Temperature (°C) Salinity (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	TESTS REQU	JIRED:	Refer to Each Location	ì :		No.	
Check No. pH Conductivity (mS/cm) Turbidity Dissolved Q, (mg/L) Temperature (°C) Salinity (°C) 1/2	Check No. pH Conductivity (mS/cm) Turbidity Dissolved Q, (mg/L) Temperature (°C) Salinity (11	TIME:	#	87 902 TO	ANALYSIS N			drocarbons, me
11 C. 93 C. 26 C. 26 C. 27	1				Turbidity	Discalled O (mg/l)	Tomporeture (9C)	Calinity (9)
21 689 728 738 739 706 331 31 31 31 31 31 31 31 31 31 31 31 31	21 6-84 728 23-8 2-3-7 23-3-7 0-06 3// 4/ 5// 6// Sample Appearance: / (ex h. Tunk of n. edew.) Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, n. Time: 2-16 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Salin		-	1 2 G	77.7			
Sample Appearance:	3/ 4/ 5/ 6/ Sample Appearance: / Lev by Tunk of Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2 TIME: 72.10 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved 0, (mg/L) Temperature (°C) Salinity (1/1 \$ -94 7.39 1.19 2.31 29.35 0.40 3/1 \$ -90 7.981 0.412 3/1 \$ -			1.58	528	2 77		
BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Sample Appearance: Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C)	BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, n		DOI	1. 20	150	6.57	23.3.1	0.00_
Sample Appearance:	Sample Appearance:							
BORE OR LOCATION ID: MW2 TIME: 12.6 TO VOLUME PURGED: TO Salinity (% Sample Appearance: Turbid to Analysis Needed Oz (mg/L) Temperature (*C) Salinity (*Ozi Mater Quality Check No. 11	BORE OR LOCATION ID: MW2 TIME: 12.10 Sample Appearance: 10							
Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2	Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2				7			
Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2	Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW2	Sample Apr	nearance.	· Ilogr 1	= Tende	1 20	low	J
BORE OR LOCATION ID: MW2 TIME: 12.16 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) 11	BORE OR LOCATION ID: MW2 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, n VOLUME PURGED: TO VOLUME PURGED: Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) Salin				C COURS		000	
TIME: 12 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) 1/1 S QH 7 3 G 1 G 2 3 G 2 G 2 G 2 G 2 G 1 G 2 G 2 G 2 G 1 G 1	TIME: 12.16 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved 02 (mg/L) Temperature (°C) Salinity (1/1 7.39 119 2.31 29.35 0.40 2/1 5.91 3.50 144 2.06 29.81 0.412 3/1 5.90 3.48 148 141 1.88 30.30 6.410 4/1 5/1 6/1 Sample Appearance: Turbidity Dissolved 02 (mg/L) Temperature (°C) Salinity (1/1 8.89 1.00) BORE OR LOCATION ID: MW3 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m Volume Purged: Turbidity Dissolved 02 (mg/L) Temperature (°C) Salinity (1/1 5.96 9.40 593 0.48 52.50 0.525 2/1 5.98 9.40 593 0.48 52.50 0.525 3/1 4/1 5/1 5/1 6	Dupilicate/E	quipinen	t wasii identinidation a	na otner Rema	11.0.		
TIME: 12 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) 1/1 S QH 7 3 G 1 G 2 3 G 2 G 2 G 2 G 2 G 1 G 2 G 2 G 2 G 1 G 1	TIME: 12.16 RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (ms/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (1/1							-
11	1/ S-94 7-39 119 2-31 29-35 0-40 2/ S-91 7-50 144 2-06 29-81 0-413 3/ S-90 7-48 141 1-88 30-30 8-4(C) 4/ 5/ 6/ Sample Appearance: Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 TIME: 2-32 TO RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved Oz (mg/L) Temperature (°C) Salinity (°C) 1/ S-98 9-40 593 0-48 32-50 0-525 2/ S-98 9-40 593 0-48 32-50 0-525 3/ 4/ 5/ 6/ Sample Appearance: Turbilly SAMT (Law G BYW) No School Ox S26 5/ 6/ Sample Appearance: Turbilly BAMT (Law G BYW) No School Ox S26 Duplicate/Equipment Wash Identification and Other Remarks:		12	10	2	VOLUME PURG	ED:	
2/ 5.9/ 7.50 144 2.06 79.81 0.413 3/ 5.90 7.48 141 1.88 30.30 6.410 4/ 5/ 6/ Sample Appearance: Turbel Dyawn no offew. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 TIME: 3.32 TO RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved 02 (mg/L) Temperature (°C) Salinity (°C) 1/ 5.98 9.40 593 0.48 32.50 0.525 2/ 6.98 9.43 6.78 6.49 32.40 0.526 3/ 4/ 5/ 6/ Sample Appearance: Turbel Bart 1 class of brown no offewer.	2/ 5.91 7.50 144 2.06 79.81 0.413 3/ 5.90 7.48 141 1.88 30.30 6.410 Sample Appearance: Turbel Dynam to other. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 TIME: 2.32 TO VOLUME PURGED: 4 Check No. pH Conductivity (mS/cm) Turbidity Dissolved O. (mg/L) Temperature (°C) Salinity (°C)	Check No.	рН	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)	Temperature (°C)	Salinity (%
3/ 5.90 + 48 (41 1.88 30.30 6.410 4/ 5/ 6/ Sample Appearance: Typh Dynam Do olow. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 TIME: 2.32 TO RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (°C) 1/ 5.98 9.40 593 0.48 32.50 0.525 2/ 5.98 9.43 6.78 0.49 32.40 0.526 3/ 4/ 5/ Sample Appearance: Twiby Brank Class & Brank No odoury	3/ S.90 7.48 [4] 1.88 30.30 G.4(C) 4/ 5/ 6/ Sample Appearance: Turby Dynam p. offew. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: TIME: 2.23 TO VOLUME PURGED: Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°1 S.98 9.40 \$9.43 \$9.40 \$9.48 \$9.50 \$0.525 \$9.40 \$9.43 \$9.40 \$9.48 \$9.50 \$0.525 \$9.40 \$9.43 \$9.40 \$9	1/	5.94	7.39	119	2.31	29.75	0.409
4/ 5/ 6/ Sample Appearance: Turbel Jayrun P. Analysis Needed. BORE OR LOCATION ID: MW3 TIME: 2.23 TO RESULTS OF WATER QUALITY CHECK Check No. ph Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (°C) 1/ 5.98 9.40 593 0.48 32.50 0.525 2/ 2/ 2/ 3/ 4/ 5/ 6/ Sample Appearance: Turbel Sample Appearance: T	Sample Appearance: Turbil Dynam No office.	2/	320 0 0	7.50		- Communication of the Communi	CONT.	0.413
Sample Appearance: Turby Dynam M. offour. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, more than the state of	Sample Appearance: Typh I by Man In a Moure Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, m VOLUME PURGED: TIME: 2:32 TO VOLUME PURGED: Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (°C) Sali		5.90	7.48	(41	1.88	30.30	0.410
Sample Appearance: Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 TIME: 2:32 TO RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) TIVE: 5:48 TIME: 5:48 TIME: 42:32 TO RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved 02 (mg/L) Temperature (°C) Salinity (% TO SI CHECK Sample Appearance: TWANT CHECK Sample Appearance: TWAN	Sample Appearance: Turk I Trivial In offew. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 TIME: 2.23 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) 1/ 5.96 9.40 \$93 0.48 \$2.50 0.525 2/ 5.98 9.43 6.78 0.49 \$2.40 0.526 3/ 4/ 5/ 6/ Sample Appearance: Turky by Trivial In officering and Other Remarks:							8
Sample Appearance: Turbil Dynam No offew. Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, more time: 2.32 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (°C)	Sample Appearance: Turbit Dynam Doctor Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3 ANALYSIS NEEDED: Ammonia, Nitrate, Nitrite, EC, Hydrocarbons, model TIME: 2:23 TO VOLUME PURGED: RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (°C)						-	
Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3	Duplicate/Equipment Wash Identification and Other Remarks: BORE OR LOCATION ID: MW3	6/	1					A. 66 Transper processors
BORE OR LOCATION ID: MW3 TIME: 3:33 TO RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (% 1/1 5:98 9:40 593 0:48 32:50 0:525 2/1 5:98 9:43 6:78 0:49 32-40 0:526 3/1 Sample Appearance: Two by Born I was a four,	BORE OR LOCATION ID: MW3 TIME: 3:23 TO RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (°C) 1/ 5:98 9:40 5:93 0:48 32:50 0:525 2/ 5:98 9:43 6:78 6:49 32:40 0:526 3/ 4/ 5/ 6/ Sample Appearance: Turbid by Water Law				180411	no ofour.		
TIME: 3.33 TO VOLUME PURGED: 46 RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (9 1/ 5.98 9.40 593 0.48 32.50 0.525 2/ 5.98 9.43 6.70 0.49 32.40 0.526 3/ 4/ 5/ 6/ Sample Appearance: TWAY BAT / Clear & BRWN No School	TIME: 3:33 TO VOLUME PURGED: 46 RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity	Duplicate/E	quipment	: Wash Identification a	nd Other Rema	rks:		
TIME: 3.33 TO VOLUME PURGED: 46 RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (9 1/ 5.98 9.40 593 0.48 32.50 0.525 2/ 5.98 9.43 6.70 0.49 32.40 0.526 3/ 4/ 5/ 6/ Sample Appearance: TWAY BAT / Clear & BRWN No School	TIME: 3:33 TO VOLUME PURGED: 46 RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity	MANAGEMENT ALCOHOLOGIC						
TIME: 3.33 TO VOLUME PURGED: 46 RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O2 (mg/L) Temperature (°C) Salinity (9 1/ 5.98 9.40 593 0.48 32.50 0.525 2/ 5.98 9.43 6.70 0.49 32.40 0.526 3/ 4/ 5/ 6/ Sample Appearance: TWAY BAT / Clear & BRWN No School	TIME: 3.33 TO VOLUME PURGED: 46 RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity							
RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (% 1/1 5.98 9.40 593 0.48 32.50 0.525 2/2 (5.98 9.43 6.78 6.78 6.79 32.40 0.526 3/2 4/2 5/3 6/4 6	RESULTS OF WATER QUALITY CHECK Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) 1/1 5.98 9.40 593 0.48 32.50 0.525 2/1 5.98 9.43 6.78 0.49 32.40 0.526 3/1 3/1 3/1 3/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 5/1 6/1 6/1 6/1 6/1 6/1 6/1 6/1 6/1 6/1 6	Interest to the second of the second			ANALYSIS N			rocarbons, me
Check No. pH Conductivity (mS/cm) Turbidity Dissolved O₂ (mg/L) Temperature (°C) Salinity (°C) 1/ 5.98 9.40 5.93 0.48 32.50 0.525 0.525 0.49 32.40 0.526 0.49 32.40 0.526 0.49 0.49 0.526 0.49 0.49 0.526 0.49 0.49 0.526 0.49 0.49 0.526 0.49 0.49 0.526 0.49 0.49 0.526 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	Check No. pH Conductivity (mS/cm) Turbidity Dissolved O ₂ (mg/L) Temperature (°C) Salinity (°C) 1/1 5.98 9.40 593 0.48 32.50 0.525 2/1 5.98 9.43 6.78 0.49 32.40 0.526 3/1 4/1 5/1 5/1 6/1 Sample Appearance: Turbid Barri I clear to brown he adour. Duplicate/Equipment Wash Identification and Other Remarks:					VOLUME PURGE	:D:	
11 5.98 9.40 593 0.48 32.50 0.525 21 5.98 9.43 678 0.49 32.40 0.526 31 31 51 61 51 61 51 61 51 61 51 61 51 61 51 61 61 61 61 61 61 61 61 61 61 61 61 61	1/ 5.98 9.40 593 0.48 32.50 0.525 2/ 5.98 9.43 6.78 0.49 32.40 0.526 3/ 4/ 5/ 6/ Sample Appearance: Turket brown least to brown he odown. Duplicate/Equipment Wash Identification and Other Remarks:		_	CONTRACTOR OF THE PARTY OF THE		T 5' 1 10 (#)	7 (00)	0 11 11 16
21 5.98 9.43 678 0.49 32.40 0.526 31 41 51 61 Sample Appearance: Turbyl 844 1 clear & 673 wn, no shown,	21 S.98 9.43 6.78 0.49 32.40 0.526 31 41 51 61 Sample Appearance: Twhy bran I clear to bran he stour; Duplicate/Equipment Wash Identification and Other Remarks:							
3/ 4/ 5/ 6/ Sample Appearance: Turby brown / class & brown no shown	3/ 4/ 5/ 6/ Sample Appearance: TWAN BYTH / Clear to brown no showr, Duplicate/Equipment Wash Identification and Other Remarks:			9.40				
4/ 5/ 6/ Sample Appearance: Twhy brown / class & brown no shown.	4/ 5/ 6/ Sample Appearance: TWAN BYWA / Clear & Bran No Scour, Duplicate/Equipment Wash Identification and Other Remarks:	-	5.90	7.4)	670	0.44	56-40	0.270
Sample Appearance: Turby by by law to by wn no odown	Sample Appearance: Twhy brown lear to brown he shown. Duplicate/Equipment Wash Identification and Other Remarks:	,						
Sample Appearance: Turby Brown I clear to brown no shour,	Sample Appearance: The hold brown lostour, Duplicate/Equipment Wash Identification and Other Remarks:							
Sample Appearance: Turby brown le class to brown no odown	Sample Appearance: Turby Bran I clear to brown no shour, Duplicate/Equipment Wash Identification and Other Remarks:					·		
	Duplicate/Equipment Wash Identification and Other Remarks:			TO CLUT I	Warri /	land the	In la ca	han es
Dupilcate/Equipment wash identification and Other Remarks:							no 89	mur)
	RCA Australia Sampled by: MHTCH Date: 76/11/70	Duplicate/Ed	auipment	wash identification ai	na Otner Kemai	KS:		
1-1-1-1-1	RCA Australia Sampled by: MHTSH Date: 76/11/70							
	RCA Australia Sampled by: MALISH Date: 76/11/70			T		16:1		121-

BORE OR	LOCATI	ON ID: MW4	ANALYSIS	NEEDED: Ammonia, N	itrate. Nitrite FC Hy	drocarbons meta
TIME:	9-2	5 the TO		VOLUME PUR	GED:	HL.
Control of the Contro	OF WAT	ER QUALITY CHECK			5.	if LNAPL prese
Check No.	рН	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L)		
1/	5,07	8-3-		_ issuerou o ₂ (mg/L)	remperature (*C)	Salinity (%)
2/	6.30	5 10-8	754	2.10	24.14	0.605
3/	6.36	1 10.1	4,4	3.98	23.00	0.56
4/				70	2305	0.30
5/	1	-				
6/		1 gred	sufer-			
Sample Ap	pearance	: Tudo Dar by De	le brown	1) hydrea to	niodom.	
Duplicate/E	Equipmen	nt Wash Identification a	nd Other Rem	arks:	GUEWI.	
2.14 40ah						
BORE OR L	OCATIO	N ID: MW6	ANALYSIS A	IEEDED. A	THE STATE OF THE S	
	3.351	Λ	10 A	NEEDED: Ammonia, Nit		
	100	R QUALITY CHECK	10/1	_ VOLUME PURG	ED: 5/	(we don't
Check No.	рН			1 100 100 100		5255
1/	- 1	Conductivity (mS/cm)	Turbidity	Dissolved O ₂ (mg/L.)	Temperature (°C)	Salinity (%)
2/	5.00	8 88	376	1.46	23.64	0.495
3/	5.19	8.65	5/4	1.38	24.46	0.477
4/	5.10	0.03	780	1.38	24.77	0.490
5/	3.10	91.45	31+	1.14	25.57	0.534
6/						
Sample App	earanco		1 -			
			6 Youns	no odour		
Daphoate/Et	anbinetti	Wash Identification an	d Other Rema	rks:		
					THE RESIDENCE OF THE PARTY OF T	
BORE OR LO		V	ANALYSIS NE	EEDED: Ammonia, Nitra	ate, Nitrite, EC, meta	ıls
TO 13.20 VOLUME PURGED.						
RESULTS OF	WATER	R QUALITY CHECK			Dunge	1 <5
Check No.	рН	Conductivity (mS/cm)	Turbidity	Dissolved C ₂ (mg/L)	Temperature (°C)	
1	3.97	17.3	1000	1.81	29.48	Salinity (%)
i	3.95	17.3	891	1.52	79 H7	1.016
1	3.94	17.2	788	1.14	29:47	1.013
1					61.16	1.016
				4		7
ample Appe		Tubids	byDasn	no odom-		
uplicate/Equ	uipment \	Wash Identification and	Other Remark	(s:		
		- Marchine			7.74	
			c 355 A	100 100 100		
and the second decision.		/A			The state of the s	

RCA Australia	Sampled by: MH	SH	Date: 26/11	24
		4		

Appendix C

Quality Assurance Review and Laboratory Report Sheets

One (1) water intralaboratory duplicate sample was submitted blind to the laboratory for analysis with the batch of samples. This represents a percentage of greater than 10%, in accordance with the frequency recommended for soil samples by the Australian Standard AS 4482.1 (Ref [5]) and RCA protocol.

One trip blank and one trip spike were submitted with the batch of samples by field personnel in accordance with the frequency recommended for soil samples by the Australian Standard AS 4482.1 (Ref [5]) and RCA protocol.

RCA omitted the field blank due to the low potential for cross contamination from the field conditions during the sampling process and the equipment wash due to the low potential for cross contamination from the designated sampling equipment.

Results, as shown further in this **Appendix**, indicate all the water analyses with RPD of less than 30% except for four (4) results:

- The sample is described as clear to turbid such that sample heterogeneity is considered the likely cause for the elevated RPD.
- The duplicate results of TRH >C₁₆-C₃₄, arsenic and zinc are higher than the primary sample (MW3) results and therefore these have been used in the characterisation.
- The MW3 ammonia result is higher than the duplicate result, and therefore the uncertainty is considered to be conservative.

There was no detectable concentration within the trip blank, which is considered acceptable.

Recoveries of 85 to 100% were recorded for the trip spike, which are considered acceptable.

ALS was chosen as the primary laboratory; ALS is NATA accredited and are experienced in the analytical requirements for potentially contaminated groundwater.

ALS undertook internal quality assurance testing. Results are contained within the laboratory report sheets, included in this **Appendix**. **Table 3** presents a summary of their review.

 Table 3
 Internal Quality Assurance Review

	Number Samples (including QA)	Laboratory Duplicates	Spikes	Laboratory Control Samples	Laboratory Blanks
Require	10%	5%	One every batch	One every batch	
Water					
Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	6	0 (2)	0 (1)	1	1
Mercury	6	0 (2)	0 (1)	1	1
Ammonia	7	1 (2)	1 (1)	2	2
Oxidisable Nitrogen	7	1 (3)	1 (1)	2	2
TRH C ₆ -C ₁₀	7	1 (1)	1 (0)	1	1
TRH >C ₁₀ -C ₄₀	5	1 (0)	1 (0)	1	1
BTEXN	7	1 (1)	1 (0)	1	1
PAH	5	2 (0)	2 (0)	2	2

Numbers in brackets refer the tests undertaken on samples not from this project but within the same laboratory batch.

Examination of the above table indicates that ALS have undertaken laboratory quality assurance testing in accordance with the ASC NEPM (Ref [4]).

With regards to the results of the quality assurance testing:

- Recoveries of surrogates were within acceptance criteria of 70-130%with the exception
 of the PAH surrogates for MW4 which could not be determined. This is considered to
 be due to the TRH concentrations which are present and not indicative of uncertainty
 in the PAH results.
 - It is noted that phenolic surrogates are reported (due to the concurrent PAH analytical method) and indicate a result below 70%. However, as no phenols analysis was undertaken these results are not considered relevant to the site characterisation.
- Relative percentage differences for duplicates were below the acceptance criterion of 30% with the exception of:
 - Fluorene in MW1 with RPD 34.6%. This sample is described as turbid and the cause of the high RPD is therefore considered to be sample heterogeneity. This is considered minor non-compliance and not significant.
- No laboratory blank result was detected above the practical quantification limit (PQL).
- Laboratory control spikes recoveries were within acceptance criteria of 70-130% with exception of:
 - The seven (7) PAH results which had recoveries ranges between 62.2% to 69.6%. These are considered minor non-compliance and are not significant.
- Matrix spike recoveries were within the within acceptance criteria of 70-130% with the exception of:

- TRH C₁₀-C₄₀ in MW4 for which a result could not be determined or had a 0% recovery. The detected concentrations were several orders of magnitude above the spiked concentrations such that the absence of a measurable spike recovery is not considered to represent uncertainty in the result.
- Acenaphthene in MW4 was not recovered and as such the non-detected result
 may be an under-estimate. There is no criterion for this compound and as such the
 uncertainty is not considered significant in the terms on ongoing monitoring.
- Pyrene recovery in MW4 was 196% such that the reported result may be an over-estimate, however as there is no criterion for this compound it is not considered significant.
- Holding times were within laboratory specified time frames.

							GI
Quality Assurance Type	Primary		Intralaborato	ory Duplicate]	Trip Blank	Trip Spike
Sample Identification	PQL		MW3	QA		TRIP BLANK	TRIP SPIKE
Date			26/11	/2024		25/11	/2024
Sample Description			Clear to turbid, pale brown and no odour. Monitoring		RPD %	Water	Water
Sample Purpose						Quality Assurance	Quality Assurance
Sample Collected by			RCA - MH/SH		1	Laboratory	Laboratory
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)							
Benzene	1 1	ט	0.5	0.5	0.0	<1	90%
Toluene	2		1	1	0.0	<2	85%
Ethylbenzene	2		1	1	0.0	<2	90%
meta- & para-Xylene	2		_ 1	1	0.0	<2	100%
Ortho-xylene	2		<u>÷</u> 	1	0.0	<2	95%
Polycyclic Aromatic Hydrocarbo			<u></u>	<u> </u>	0.0		9370
Napthalene	5 5		2.5	2.5	0.0	<5	100%
Total Recoverable Hydrocarbon			2.5	2.5	0.0		100 /0
TRH C ₆ -C ₁₀	20		10	10	0.0	<20	
			<u>10</u>	<u>10</u>	0.0		
TRH >C ₁₀ -C ₁₆	100		<u>50</u>	<u>50</u>	0.0		
TRH >C ₁₆ -C ₃₄	100		<u>50</u>	160	104.8		
TRH >C ₃₄ -C ₄₀	100		<u>50</u>	<u>50</u>	0.0		
Polycyclic Aromatic Hydrocarbo	ons (PAH)						
Acenaphthene	0.1		0.05	0.05	0.0		
Acenaphthylene	0.1		0.05	0.05	0.0		
Anthracene	0.1		0.05	0.05	0.0		
Benz(a)anthracene	0.1		<u>0.05</u>	0.05	0.0	1	
Benzo(a) pyrene	0.05		0.025	0.025	0.0	-	
Benzo(b)&(j)fluoranthene	0.1		<u>0.05</u>	<u>0.05</u>	0.0	-	
Benzo(g,h,i)perylene	0.1		0.05	0.05	0.0		
Benzo(k)fluoranthene	0.1		<u>0.05</u>	0.05	0.0		
Chrysene	0.1		0.05	0.05	0.0		
Dibenz(a,h)anthracene	0.1		0.05	0.05	0.0		
Fluoranthene	0.1		0.05	0.05	0.0		
Fluorene	0.1		0.1	0.1	0.0		
Indeno(1,2,3-c,d)pyrene	0.1		<u>0.05</u>	0.05	0.0	-	
Naphthalene	0.1		0.1	0.1	0.0		
Phenanthrene	0.1		0.2	0.2	0.0		
Pyrene	0.1		<u>0.05</u>	<u>0.05</u>	0.0	-	
Metals							
Arsenic	1		0.5	4	155.6		
Cadmium	0.1		0.05	0.05	0.0		
Chromium	1		<u>0.5</u>	0.5	0.0	-	
Copper	1		<u>0.5</u>	<u>0.5</u>	0.0		
Lead	1		<u>0.5</u>	<u>0.5</u>	0.0		
Mercury	0.1		<u>0.05</u>	<u>0.05</u>	0.0	-	
Nickel	1		20	18	10.5	-	
Zinc	5		14	30	72.7	-	
Nutrients							
Ammonia as N	10		2370	710	107.8		
Nitrite + Nitrate as N	10		20	5	120.0		

Note all units in $\,\mu\text{g/L}$ except for trip spikes results in % recovery

PQL = Practical Quantitation Limit.

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results >30% **BOLD identifies** where blanks > PQL

BOLD identifies where spikes outside of 70-130% recovery range

Toll Group Groundwater Monitoring Toll Tomago Site RCA ref:12513e-216/0, December 2024 Prepared by: MH Checked by: FB RCA Australia AWS-TEM-018/18

CERTIFICATE OF ANALYSIS

Work Order : **ES2438668**

Client : ROBERT CARR & ASSOCIATES P/L

Contact : MS FIONA BROOKER

Address : 92 HILL STREET

CARRINGTON NSW 2294

Telephone : +61 02 4902 9200

Project : 12513e

Order number : ----

C-O-C number : ----Sampler : MH SH

Site : ----

Quote number : EN/222

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 10

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 27-Nov-2024 12:10

Date Analysis Commenced : 28-Nov-2024

Issue Date : 05-Dec-2024 11:01

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

Page : 2 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

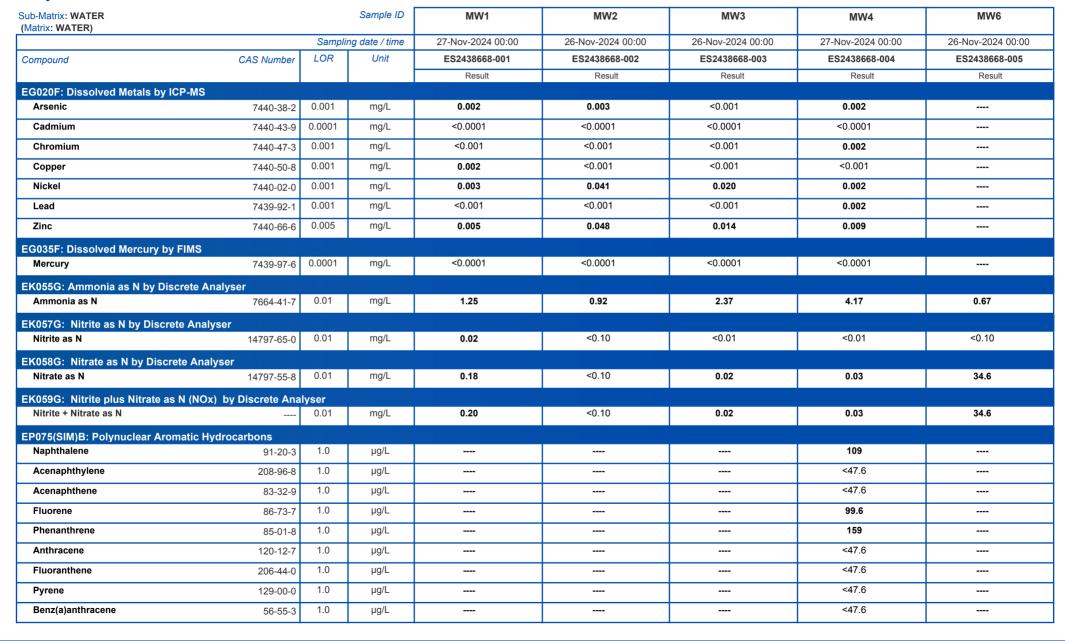
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

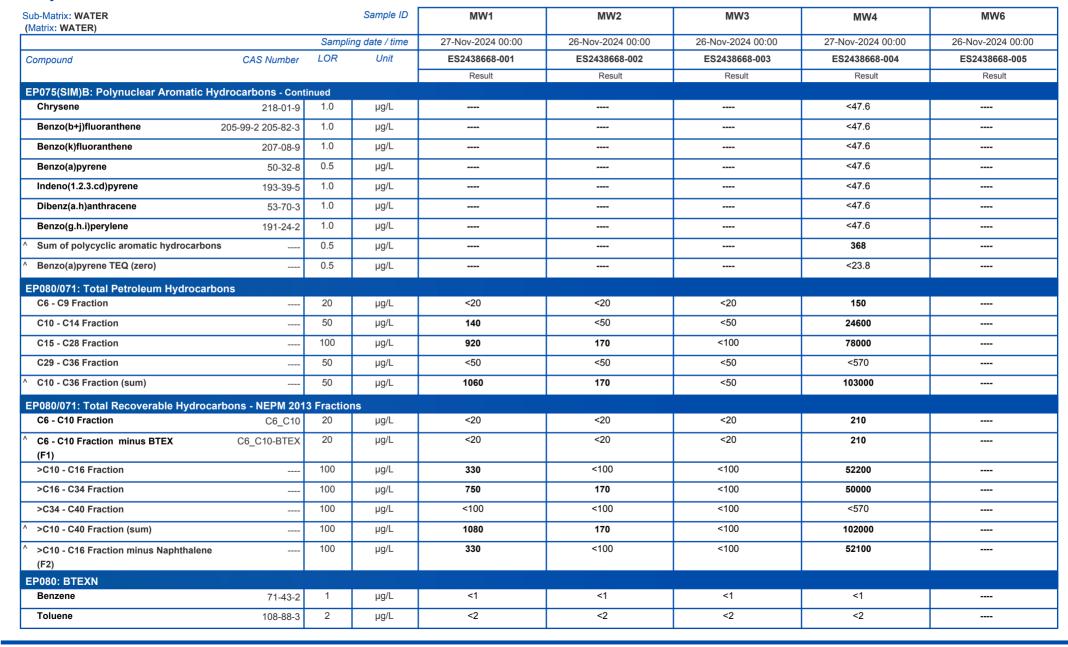
^ = This result is computed from individual analyte detections at or above the level of reporting


- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- P080: Positive result for ES2438668-04 has been confirmed by re-analysis. Sample has two separate layers, oily layer is on the top and water layer is sitting at the bottom and BTEX analysis was conducted on water layer.
- EK057G: LOR raised for Nitrite on various samples due to sample matrix.
- EK059G: LOR raised for NOx on sample nos.2 and 7 due to sample matrix.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1). Dibenz(a,h)anthracene (1.0), Benzo(a,h)apyrene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported. Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP075(SIM): Surrogate recovery bias low due to sample matrix interferences, confirmed by re-analysis.
- EP075(SIM): Poor matrix spike recovery due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- EP071: Particular samples required dilution due to sample matrix. LOR values have been adjusted accordingly.
- EP075(SIM): Particular samples required dilution due to sample matrix. LOR values have been adjusted accordingly.
- EP132: Where reported, Total PAH reported as the sum of Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benz(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i)perylene.

Page : 3 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e



Page : 4 of 10 Work Order : ES2438668

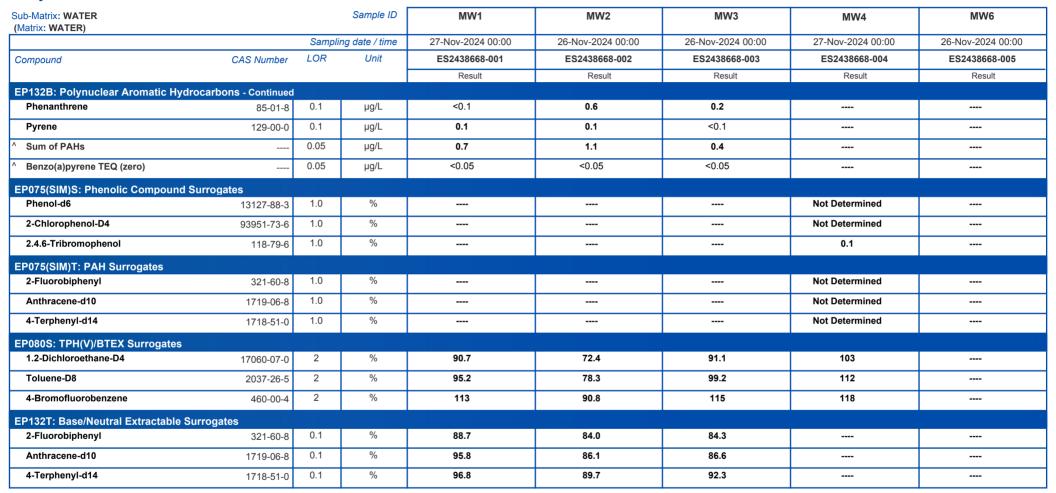
Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Page : 5 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

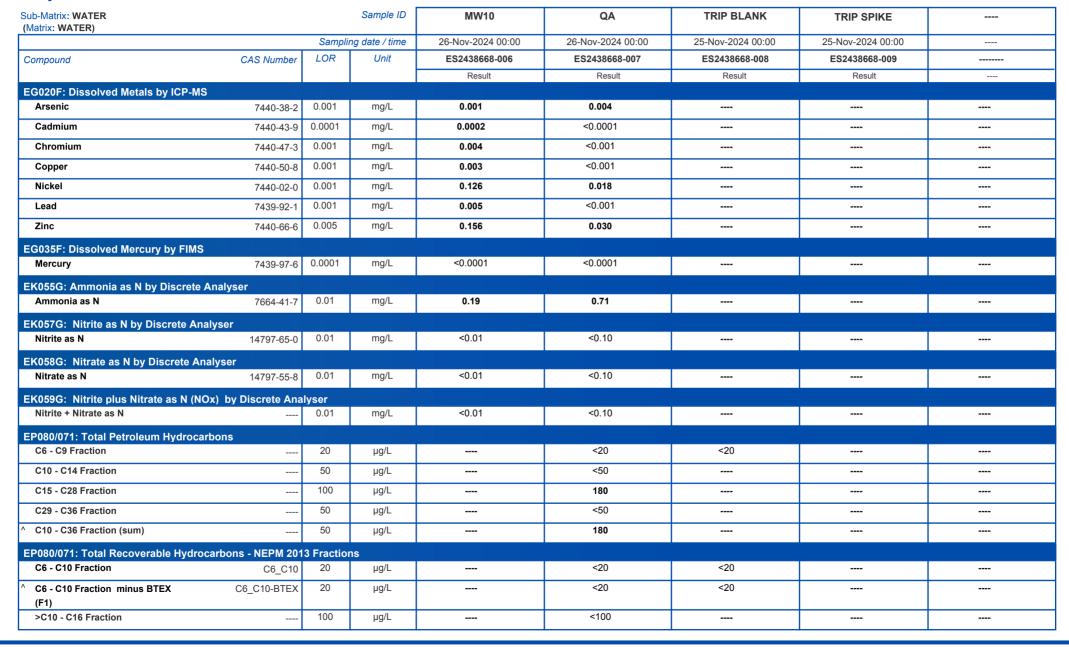
Project : 12513e



Page : 6 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

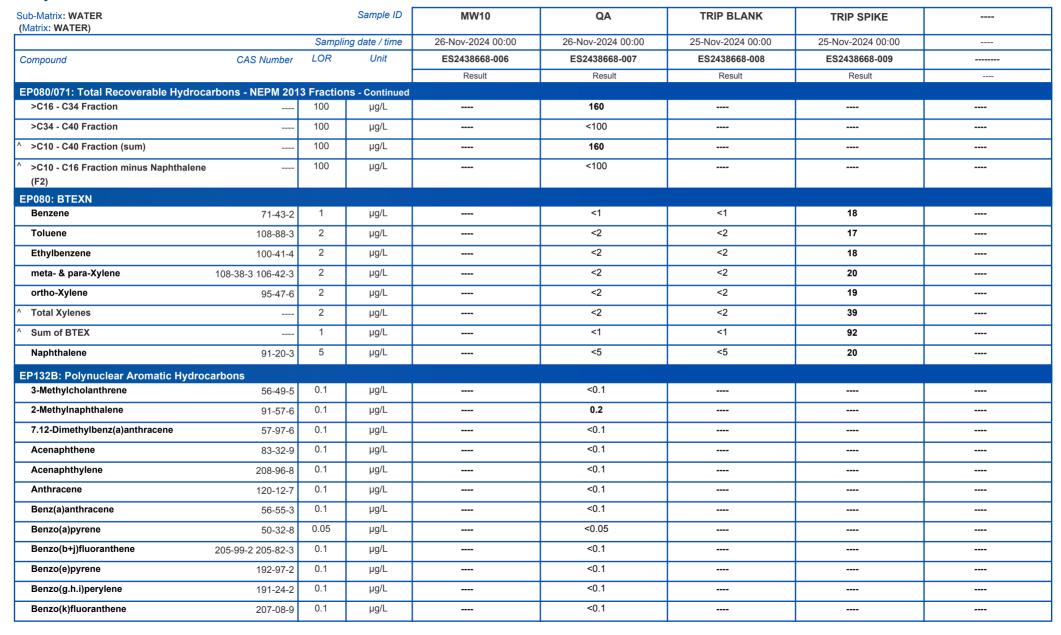
Project : 12513e



Page : 7 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

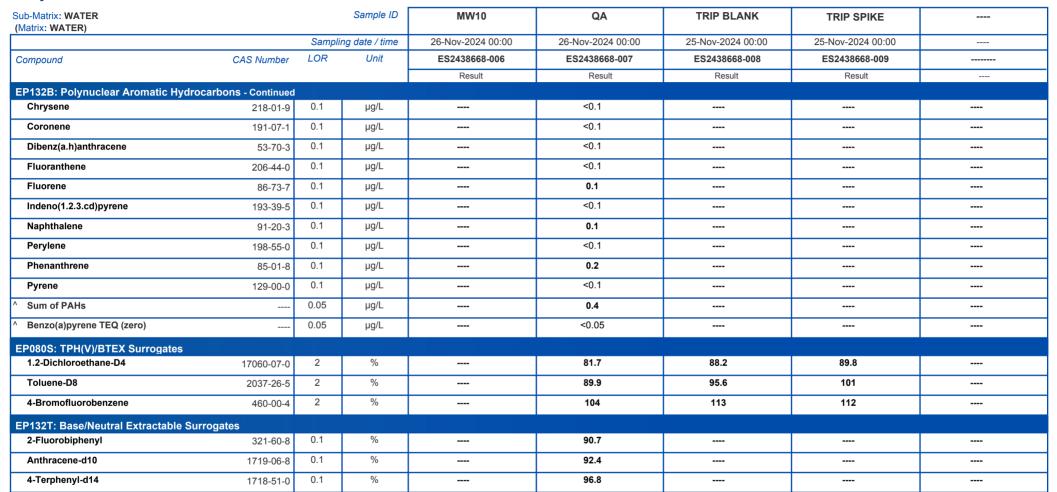
Project : 12513e



Page : 8 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e



Page : 9 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Analytical Results

Page : 10 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound S	Surrogates		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	143
Toluene-D8	2037-26-5	75	131
4-Bromofluorobenzene	460-00-4	73	137
EP132T: Base/Neutral Extractable S	urrogates		
2-Fluorobiphenyl	321-60-8	43	135
Anthracene-d10	1719-06-8	48	138
4-Terphenyl-d14	1718-51-0	48	144

QUALITY CONTROL REPORT

Work Order : **ES2438668** Page : 1 of 10

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Customer Services ES

Address : 92 HILL STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

CARRINGTON NSW 2294

Telephone : +61 02 4902 9200 Telephone : +61-2-8784 8555

 Project
 : 12513e
 Date Samples Received
 : 27-Nov-2024

 Order number
 : --- Date Analysis Commenced
 : 28-Nov-2024

C-O-C number : ---- Issue Date : 05-Dec-2024

Sampler : MH SH
Site :----

No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

Accreditation No. 825

Accredited for compliance with

not be reproduced, except in full.

This Quality Control Report contains the following information:

: EN/222

: 9

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

Page : 2 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EG020F: Dissolved	Metals by ICP-MS (C	QC Lot: 6222717)								
EN2415560-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0002	0.0002	0.0	No Limit	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.001	0.0	No Limit	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.010	0.010	0.0	0% - 50%	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit	
EN2415560-011	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit	
EG035F: Dissolved	Mercury by FIMS (Q	C Lot: 6222718)								
EN2415560-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EN2415560-010	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EK055G: Ammonia	as N by Discrete Ana	alyser (QC Lot: 6222455)								
ES2438668-001	MW1	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.25	1.37	9.0	0% - 20%	
EK055G: Ammonia	as N by Discrete Ana	alyser (QC Lot: 6223079)								

Page : 3 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER						Laboratory E	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK055G: Ammonia a	s N by Discrete Analyser (C	C Lot: 6223079) - continued							
ES2438664-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.05	0.05	0.0	No Limit
ES2438673-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.01	0.02	0.0	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC	Lot: 6221984)							
ES2438717-004	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ED2400153-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01 (1.00)*	mg/L	<1.00	<1.00	0.0	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC I	Lot: 6222989)							
ES2438861-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2438722-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 6222456)							
ES2438690-012	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2438668-001	MW1	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.20	0.20	0.0	0% - 20%
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 6223078)							
ES2438664-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2438673-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EP075(SIM)B: Polynu	ıclear Aromatic Hydrocarbo								
ES2438668-004	MW4	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Naphthalene	91-20-3	1 (47.6)*	μg/L	109	118	8.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	1 (47.6)*	μg/L	99.6	103	3.5	No Limit
		EP075(SIM): Phenanthrene	85-01-8	1 (47.6)*	μg/L	159	163	2.1	No Limit
		EP075(SIM): Anthracene	120-12-7	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1 (47.6)*	μg/L	<47.6	<47.6	0.0	No Limit
EP080/071: Total Peti	roleum Hydrocarbons (QC	Lot: 6220139)							
ES2438668-004	MW4	EP071: C15 - C28 Fraction		100 (570)*	μg/L	78000	78100	0.1	0% - 20%
		EP071: C10 - C14 Fraction		50 (570)*	μg/L	24600	24700	0.6	0% - 20%
		EP071: C29 - C36 Fraction		50 (570)*	μg/L	<570	<570	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 6224764)							

Page : 4 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	troleum Hydrocarboi	ns (QC Lot: 6224764) - continued							
ES2438668-001	MW1	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2438804-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	40	50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocark	bons - NEPM 2013 Fractions (QC Lot: 6220139)							
ES2438668-004	MW4	EP071: >C10 - C16 Fraction		100 (570)*	μg/L	52200	52300	0.1	0% - 20%
		EP071: >C16 - C34 Fraction		100 (570)*	μg/L	50000	50300	0.6	0% - 20%
		EP071: >C34 - C40 Fraction		100 (570)*	μg/L	<570	<570	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocark	bons - NEPM 2013 Fractions (QC Lot: 6224764)							
ES2438668-001	MW1	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2438804-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	30	40	0.0	No Limit
EP080: BTEXN (QC	Lot: 6224764)								
ES2438668-001	MW1	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2438804-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	8	8	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocar	rbons (QC Lot: 6220028)							
ES2438668-001	MW1	EP132: Benzo(a)pyrene	50-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP132: 3-Methylcholanthrene	56-49-5	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: 2-Methylnaphthalene	91-57-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Acenaphthene	83-32-9	0.1	μg/L	0.2	0.1	0.0	No Limit
		EP132: Acenaphthylene	208-96-8	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Anthracene	120-12-7	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benz(a)anthracene	56-55-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benzo(b+j)fluoranthene	205-99-2	0.1	μg/L	<0.1	<0.1	0.0	No Limit
			205-82-3	_				_	
		EP132: Benzo(e)pyrene	192-97-2	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benzo(g.h.i)perylene	191-24-2	0.1	μg/L	<0.1	<0.1	0.0	No Limit
		EP132: Benzo(k)fluoranthene	207-08-9	0.1	μg/L	<0.1	<0.1	0.0	No Limit

Page : 5 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER	b-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EP132B: Polynuclea	EP132B: Polynuclear Aromatic Hydrocarbons (QC Lot: 6220028) - continued											
ES2438668-001	MW1	EP132: Chrysene	218-01-9	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Coronene	191-07-1	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Dibenz(a.h)anthracene	53-70-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Fluoranthene	206-44-0	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Fluorene	86-73-7	0.1	μg/L	0.4	0.3	34.6	No Limit			
		EP132: Indeno(1.2.3.cd)pyrene	193-39-5	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Naphthalene	91-20-3	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Perylene	198-55-0	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Phenanthrene	85-01-8	0.1	μg/L	<0.1	<0.1	0.0	No Limit			
		EP132: Pyrene	129-00-0	0.1	μg/L	0.1	<0.1	0.0	No Limit			

Page : 6 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound CAS Num	ber LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 6222717)							
EG020A-F: Arsenic 7440-3	3-2 0.001	mg/L	<0.001	0.1 mg/L	100.0	85.0	114
EG020A-F: Cadmium 7440-4	3-9 0.0001	mg/L	<0.0001	0.1 mg/L	95.6	84.0	110
EG020A-F: Chromium 7440-4	7-3 0.001	mg/L	<0.001	0.1 mg/L	100	85.0	111
EG020A-F: Copper 7440-5	0.001	mg/L	<0.001	0.1 mg/L	97.7	81.0	111
EG020A-F: Lead 7439-9	2-1 0.001	mg/L	<0.001	0.1 mg/L	97.8	83.0	111
EG020A-F: Nickel 7440-0	2-0 0.001	mg/L	<0.001	0.1 mg/L	97.2	82.0	112
EG020A-F: Zinc 7440-6	6-6 0.005	mg/L	<0.005	0.1 mg/L	89.7	81.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 6222718)							
EG035F: Mercury 7439-9	7-6 0.0001	mg/L	<0.0001	0.01 mg/L	95.9	83.0	105
EK055G: Ammonia as N by Discrete Analyser (QCLot: 6222455)							
EK055G: Ammonia as N 7664-4	1-7 0.01	mg/L	<0.01	1 mg/L	107	90.0	114
EK055G: Ammonia as N by Discrete Analyser (QCLot: 6223079)							
EK055G: Ammonia as N 7664-4	1-7 0.01	mg/L	<0.01	0.5 mg/L	103	90.0	114
EK057G: Nitrite as N by Discrete Analyser (QCLot: 6221984)							<u>'</u>
EK057G: Nitrite as N 14797-6:	5-0 0.01	mg/L	<0.01	0.5 mg/L	101	82.0	114
EK057G: Nitrite as N by Discrete Analyser (QCLot: 6222989)							
EK057G: Nitrite as N 14797-6:	5-0 0.01	mg/L	<0.01	0.5 mg/L	95.9	82.0	114
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLo	ot: 6222456)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	98.2	91.0	113
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLo	ot: 6223078)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	106	91.0	113
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 6220140	,						
EP075(SIM): Naphthalene 91-2		μg/L	<1.0	5 μg/L	63.7	50.0	94.0
EP075(SIM): Acenaphthylene 208-9	6-8 1	μg/L	<1.0	5 μg/L	66.0	63.6	114
EP075(SIM): Acenaphthene 83-3:	2-9 1	μg/L	<1.0	5 μg/L	70.7	62.2	113
EP075(SIM): Fluorene 86-73	3-7 1	μg/L	<1.0	5 μg/L	71.3	63.9	115
EP075(SIM): Phenanthrene 85-0	1-8 1	μg/L	<1.0	5 μg/L	92.0	62.6	116
EP075(SIM): Anthracene 120-1:	2-7 1	μg/L	<1.0	5 μg/L	74.7	64.3	116
EP075(SIM): Fluoranthene 206-4	1-0 1	μg/L	<1.0	5 μg/L	93.9	63.6	118
EP075(SIM): Pyrene 129-0)-0 1	μg/L	<1.0	5 μg/L	77.3	63.1	118
			1	1	1.15	l .	

Page : 7 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (C	· · · · · · · · · · · · · · · · · · ·	ontinued					_	
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	73.4	64.1	117
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	77.9	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	μg/L	<1.0	5 μg/L	85.0	61.7	119
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	72.4	63.0	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	72.4	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	62.2	59.9	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	63.5	61.2	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	62.5	59.1	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 62	20139)							
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	71.9	53.7	97.0
EP071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	87.0	63.3	107
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	117	58.3	120
EP080/071: Total Petroleum Hydrocarbons (QCLot: 62	24764)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	91.0	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	.ot: 6220139)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	78.1	53.9	95.5
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	93.5	57.8	110
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	111	50.5	115
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	.ot: 6224764)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	94.6	75.0	127
EP080: BTEXN (QCLot: 6224764)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	95.2	68.3	119
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	105	73.5	120
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	110	73.8	122
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	10 μg/L	121	73.0	122
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	111	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	114	75.5	124
EP132B: Polynuclear Aromatic Hydrocarbons (QCLot	: 6220028)							
EP132: 3-Methylcholanthrene	56-49-5	0.1	μg/L	<0.1	4 μg/L	101	60.0	120
EP132: 2-Methylnaphthalene	91-57-6	0.1	μg/L	<0.1	4 μg/L	69.6	59.0	123
EP132: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.1	μg/L	<0.1	4 μg/L	124	36.0	144
EP132: Acenaphthene	83-32-9	0.1	μg/L	<0.1	4 μg/L	73.1	64.0	122
EP132: Acenaphthylene	208-96-8	0.1	μg/L	<0.1	4 μg/L	75.3	64.0	126

Page : 8 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 6220028) - contin	ued						
EP132: Anthracene	120-12-7	0.1	μg/L	<0.1	4 μg/L	79.7	65.0	127
EP132: Benz(a)anthracene	56-55-3	0.1	μg/L	<0.1	4 μg/L	92.5	64.0	130
EP132: Benzo(a)pyrene	50-32-8	0.05	μg/L	<0.05	4 μg/L	90.1	64.0	126
EP132: Benzo(b+j)fluoranthene	205-99-2	0.1	μg/L	<0.1	4 μg/L	93.4	62.0	126
	205-82-3							
EP132: Benzo(e)pyrene	192-97-2	0.1	μg/L	<0.1	4 μg/L	90.0	62.0	126
EP132: Benzo(g.h.i)perylene	191-24-2	0.1	μg/L	<0.1	4 μg/L	91.4	56.0	126
EP132: Benzo(k)fluoranthene	207-08-9	0.1	μg/L	<0.1	4 μg/L	84.2	68.0	130
EP132: Chrysene	218-01-9	0.1	μg/L	<0.1	4 μg/L	89.4	66.0	130
EP132: Coronene	191-07-1	0.1	μg/L	<0.1	4 μg/L	93.5	35.0	133
EP132: Dibenz(a.h)anthracene	53-70-3	0.1	μg/L	<0.1	4 μg/L	89.2	58.0	128
EP132: Fluoranthene	206-44-0	0.1	μg/L	<0.1	4 μg/L	87.7	65.0	127
EP132: Fluorene	86-73-7	0.1	μg/L	<0.1	4 μg/L	75.9	64.0	124
EP132: Indeno(1.2.3.cd)pyrene	193-39-5	0.1	μg/L	<0.1	4 μg/L	92.0	57.0	127
EP132: Naphthalene	91-20-3	0.1	μg/L	<0.1	4 μg/L	66.6	54.0	128
EP132: Perylene	198-55-0	0.1	μg/L	<0.1	4 μg/L	89.1	66.0	130
EP132: Phenanthrene	85-01-8	0.1	μg/L	<0.1	4 μg/L	78.1	65.0	129
EP132: Pyrene	129-00-0	0.1	μg/L	<0.1	4 μg/L	86.7	66.0	128

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable l	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG020F: Dissolved	d Metals by ICP-MS (QCLot: 6222717)							
EN2415560-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	102	70.0	130	
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	92.9	70.0	130	
		EG020A-F: Chromium	7440-47-3	1 mg/L	99.3	70.0	130	
		EG020A-F: Copper	7440-50-8	1 mg/L	97.2	70.0	130	
		EG020A-F: Lead	7439-92-1	1 mg/L	86.3	70.0	130	
		EG020A-F: Nickel	7440-02-0	1 mg/L	97.2	70.0	130	
		EG020A-F: Zinc	7440-66-6	1 mg/L	99.4	70.0	130	
EG035F: Dissolved	d Mercury by FIMS (QCLot: 6222718)							
EN2415560-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	89.4	70.0	130	

Page : 9 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable i	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 6222455)						
ES2438668-001	MW1	EK055G: Ammonia as N	7664-41-7	1 mg/L	130	70.0	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 6223079)						
ES2438664-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	96.2	70.0	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 6221984)						
ED2400153-001	Anonymous	EK057G: Nitrite as N	14797-65-0	50 mg/L	114	70.0	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 6222989)						
ES2438722-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	113	70.0	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 6	222456)					
ES2438668-001	MW1	EK059G: Nitrite + Nitrate as N		0.5 mg/L	105	70.0	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 6						
ES2438664-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	102	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 6220140)	Entered Times and Times an		Ü			
ES2438668-004	MW4	EP075(SIM): Acenaphthene	83-32-9	20 μg/L	# 0.0	70.0	130
		EP075(SIM): Pyrene	129-00-0	20 μg/L	# 196	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 6220139)						
ES2438668-004	MW4	EP071: C10 - C14 Fraction		200 μg/L	# Not	70.0	130
					Determined		
		EP071: C15 - C28 Fraction		250 μg/L	# Not	71.0	130
		ED074: 000 - 000 Freelier		200 μg/L	Determined # 0.0	67.0	130
ED000/074 - T-1-1 B	(00) (1,000,470,4)	EP071: C29 - C36 Fraction		200 μg/L	# 0.0	67.0	130
	etroleum Hydrocarbons (QCLot: 6224764)			225	02.4	70.0	420
ES2438668-001	MW1	EP080: C6 - C9 Fraction		325 μg/L	83.1	70.0	130
	ecoverable Hydrocarbons - NEPM 2013 Fractions (QC			050 #		70.0	400
ES2438668-004	MW4	EP071: >C10 - C16 Fraction		250 μg/L	# Not Determined	70.0	130
		EP071: >C16 - C34 Fraction		350 μg/L	# Not	75.0	130
		El of it. 9 to 90 th tagain			Determined		
		EP071: >C34 - C40 Fraction		150 μg/L	# 0.0	67.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QC	CLot: 6224764)					
ES2438668-001	MW1	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	82.2	70.0	130
EP080: BTEXN (Q	CLot: 6224764)						
ES2438668-001	MW1	EP080: Benzene	71-43-2	25 μg/L	87.8	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	90.1	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	93.0	70.0	130

Page : 10 of 10 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Sub-Matrix: WATER				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (C	QCLot: 6224764) - continued						
ES2438668-001	MW1	EP080: meta- & para-Xylene	108-38-3	25 μg/L	102	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	97.3	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	94.7	70.0	130
EP132B: Polynuc	lear Aromatic Hydrocarbons (QCLot: 6220028)						
ES2438668-001	MW1	EP132: 3-Methylcholanthrene	56-49-5	2 μg/L	# 120	59.0	115
		EP132: 2-Methylnaphthalene	91-57-6	2 μg/L	104	46.0	120
		EP132: 7.12-Dimethylbenz(a)anthracene	57-97-6	2 μg/L	101	21.0	135
		EP132: Acenaphthene	83-32-9	2 μg/L	108	62.0	114
		EP132: Acenaphthylene	208-96-8	2 μg/L	112	61.0	119
		EP132: Anthracene	120-12-7	2 μg/L	115	68.0	116
		EP132: Benz(a)anthracene	56-55-3	2 μg/L	117	67.0	122
		EP132: Benzo(a)pyrene	50-32-8	2 μg/L	# 115	72.0	114
		EP132: Benzo(b+j)fluoranthene	205-99-2	2 μg/L	117	69.0	119
			205-82-3				
		EP132: Benzo(e)pyrene	192-97-2	2 μg/L	114	71.0	119
		EP132: Benzo(g.h.i)perylene	191-24-2	2 μg/L	114	49.0	133
		EP132: Benzo(k)fluoranthene	207-08-9	2 μg/L	110	71.0	124
		EP132: Chrysene	218-01-9	2 μg/L	115	70.0	118
		EP132: Coronene	191-07-1	2 μg/L	114	29.0	138
		EP132: Dibenz(a.h)anthracene	53-70-3	2 μg/L	114	60.0	122
		EP132: Fluoranthene	206-44-0	2 μg/L	116	65.0	121
		EP132: Fluorene	86-73-7	2 μg/L	110	63.0	118
		EP132: Indeno(1.2.3.cd)pyrene	193-39-5	2 μg/L	116	57.0	123
		EP132: Naphthalene	91-20-3	2 μg/L	102	53.0	115
		EP132: Perylene	198-55-0	2 μg/L	114	71.0	118
		EP132: Phenanthrene	85-01-8	2 μg/L	111	67.0	120
		EP132: Pyrene	129-00-0	2 μg/L	115	70.0	117

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2438668** Page : 1 of 8

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

 Contact
 : MS FIONA BROOKER
 Telephone
 : +61-2-8784 8555

 Project
 : 12513e
 Date Samples Received
 : 27-Nov-2024

 Site
 : --- Issue Date
 : 05-Dec-2024

Sampler : MH SH No. of samples received : 9
Order number : ---- No. of samples analysed : 9

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 8
Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2438668004	MW4	Acenaphthene	83-32-9	0.0 %	70.0-130%	Recovery less than lower data quality
							objective
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ES2438668004	MW4	Pyrene	129-00-0	196 %	70.0-130%	Recovery greater than upper data
							quality objective
EP080/071: Total Petroleum Hydrocarbons	ES2438668004	MW4	C10 - C14 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2438668004	MW4	C15 - C28 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	ES2438668004	MW4	C29 - C36 Fraction		0.0 %	67.0-130%	Recovery less than lower data quality
							objective
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	ES2438668004	MW4	>C10 - C16 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	ES2438668004	MW4	>C16 - C34 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	ES2438668004	MW4	>C34 - C40 Fraction		0.0 %	67.0-130%	Recovery less than lower data quality
							objective
EP132B: Polynuclear Aromatic Hydrocarbons	ES2438668001	MW1	3-Methylcholanthrene	56-49-5	120 %	59.0-115%	Recovery greater than upper data
							quality objective
EP132B: Polynuclear Aromatic Hydrocarbons	ES2438668001	MW1	Benzo(a)pyrene	50-32-8	115 %	72.0-114%	Recovery greater than upper data
							quality objective

Regular Sample Surrogates

Sub-Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP075(SIM)S: Phenolic Compound Surrogates	ES2438668-004	MW4	2.4.6-Tribromophenol	118-79-6	0.1 %	17.0-125	Recovery less than lower data quality
						%	objective

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Page : 3 of 8
Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)								
MW2,	MW3,	26-Nov-2024				29-Nov-2024	25-May-2025	✓
MW10,	QA							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)	MANA	27-Nov-2024				29-Nov-2024	26-May-2025	
MW1,	MW4	27-NOV-2024				29-NOV-2024	20-May-2025	✓
EG035F: Dissolved Mercury by FIMS		<u> </u>						
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) MW2,	MW3,	26-Nov-2024				30-Nov-2024	24-Dec-2024	1
MW10,	QA	20-1107-2024				00-1101-2024	21 200 2021	Y
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)	Q/1							
MW1,	MW4	27-Nov-2024				30-Nov-2024	25-Dec-2024	✓
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK055G)		T T						
MW1		27-Nov-2024				28-Nov-2024	28-Nov-2024	✓
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW2,	MW3,	26-Nov-2024				29-Nov-2024	24-Dec-2024	✓
MW6,	MW10,							
QA								
Clear Plastic Bottle - Sulfuric Acid (EK055G) MW4		27-Nov-2024				29-Nov-2024	25-Dec-2024	✓
		27-1404-2024				25-1107-2024	20 800 202 1	V
EK057G: Nitrite as N by Discrete Analyser Clear Plastic Bottle - Natural (EK057G)		<u> </u>	<u> </u>			<u> </u>		
MW2,	MW3,	26-Nov-2024				28-Nov-2024	28-Nov-2024	1
MW6,	MW10,							Y
QA	,							
Clear Plastic Bottle - Natural (EK057G)								
MW1,	MW4	27-Nov-2024				29-Nov-2024	29-Nov-2024	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser							
Clear Plastic Bottle - Natural (EK059G)								
MW1		27-Nov-2024				28-Nov-2024	29-Nov-2024	✓
Clear Plastic Bottle - Sulfuric Acid (EK059G)	MANO	26 Nov 2004				20 Nov 2004	24-Dec-2024	
MW2,	MW3,	26-Nov-2024				29-Nov-2024	24-De0-2024	✓
MW6, QA	MW10,							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
MW4		27-Nov-2024				29-Nov-2024	25-Dec-2024	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM))								
MW4		27-Nov-2024	29-Nov-2024	04-Dec-2024	1	05-Dec-2024	08-Jan-2025	✓

Page : 4 of 8
Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
MW2,	MW3,	26-Nov-2024	29-Nov-2024	03-Dec-2024	✓	04-Dec-2024	08-Jan-2025	✓
QA								
Amber Glass Bottle - Unpreserved (EP071)	MW4	27-Nov-2024	29-Nov-2024	04-Dec-2024		04-Dec-2024	08-Jan-2025	
MW1,	WW4	27-NOV-2024	29-NOV-2024	04-Dec-2024	√	04-Dec-2024	00-3411-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080) TRIP BLANK		25-Nov-2024	02-Dec-2024	09-Dec-2024	✓	02-Dec-2024	09-Dec-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080)								·
MW2,	MW3,	26-Nov-2024	02-Dec-2024	10-Dec-2024	✓	02-Dec-2024	10-Dec-2024	✓
QA								
Amber VOC Vial - Sulfuric Acid (EP080)								
MW1,	MW4	27-Nov-2024	02-Dec-2024	11-Dec-2024	✓	02-Dec-2024	11-Dec-2024	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	13 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
MW2,	MW3,	26-Nov-2024	29-Nov-2024	03-Dec-2024	1	04-Dec-2024	08-Jan-2025	✓
QA								
Amber Glass Bottle - Unpreserved (EP071)				0.4 5 000.4				
MW1,	MW4	27-Nov-2024	29-Nov-2024	04-Dec-2024	<u> </u>	04-Dec-2024	08-Jan-2025	✓
Amber VOC Vial - Sulfuric Acid (EP080) TRIP BLANK		25-Nov-2024	02-Dec-2024	09-Dec-2024	1	02-Dec-2024	09-Dec-2024	√
Amber VOC Vial - Sulfuric Acid (EP080)								·
MW2,	MW3,	26-Nov-2024	02-Dec-2024	10-Dec-2024	✓	02-Dec-2024	10-Dec-2024	✓
QA								
Amber VOC Vial - Sulfuric Acid (EP080)								
MW1,	MW4	27-Nov-2024	02-Dec-2024	11-Dec-2024	✓	02-Dec-2024	11-Dec-2024	✓
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080)								
TRIP BLANK,	TRIP SPIKE	25-Nov-2024	02-Dec-2024	09-Dec-2024	✓	02-Dec-2024	09-Dec-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080)		00.11. 0004	00 0 0004	40 D - 0004	,		40 D - 0004	,
MW2,	MW3,	26-Nov-2024	02-Dec-2024	10-Dec-2024	✓	02-Dec-2024	10-Dec-2024	✓
QA								
Amber VOC Vial - Sulfuric Acid (EP080)	NA14	27 Nov. 2024	02 Dec 2024	11 Dec 2024		02 Dec 2004	11 Dec 2024	
MW1,	MW4	27-Nov-2024	02-Dec-2024	11-Dec-2024	✓	02-Dec-2024	11-Dec-2024	✓
EP132B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP132)				00 D - 0004			07 1 0005	
MW2,	MW3,	26-Nov-2024	28-Nov-2024	03-Dec-2024	✓	29-Nov-2024	07-Jan-2025	✓
QA								
Amber Glass Bottle - Unpreserved (EP132)		27 Nov. 2024	20 Nov. 2024	04-Dec-2024	,	02-Dec-2024	07-Jan-2025	
MW1		27-Nov-2024	28-Nov-2024	04-1066-2024	✓	02-Dec-2024	07-3411-2025	✓

Page : 5 of 8 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

The expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: * = Quality Control frequency not within specification: * = Quality Control frequency within specification.

Matrix: WATER				Evaluation	n: × = Quality Co	ontrol frequency r	ot within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	37	10.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	4	34	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	2	23	8.70	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	37	5.41	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	2	23	8.70	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	37	5.41	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	34	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	2	23	8.70	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	37	5.41	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	34	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
X /	Li 0/0(0livi)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page : 6 of 8
Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Matrix: WATER		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specific					
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Semivolatile Compounds by GCMS(SIM - Ultra-trace)	EP132	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8
Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Project : 12513e

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered
			prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions
			are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct
			mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are
			0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A
			bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic
			mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell.
			Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM
			Schedule B(3).
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.
			This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.
			This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed
			by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate
			calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM
			Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and
			quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This
			method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode
			and quantification is by comparison against an established 5 point calibration curve. This method is compliant
			with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary
			GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a
			sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This
		14/4-755	method is compliant with the QC requirements of NEPM Schedule B(3)
Semivolatile Compounds by GCMS(SIM	EP132	WATER	In house: Referenced to USEPA 3640 (GPC Cleanup), 8270 GCMS Capillary column, SIM mode. This method is
- Ultra-trace)			compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions

Page : 8 of 8 Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel
			and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated
			and concentrated for analysis. This method is compliant with NEPM Schedule B(3) . ALS default excludes
			sediment which may be resident in the container.
Sep. Funnel Extraction /Acetylation of	ORG14-AC	WATER	In house: Referenced to USEPA 3510 (Extraction) / In-house (Acetylation): A 1L sample is extracted into
Phenolic Compounds			dichloromethane and concentrated to 1 mL with echange into cyclohexane. Phenolic compounds are reacted
			with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis. This method is compliant with
			NEPM Schedule B(3) . ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

CHAIN OF CUSTODY

ALS Laboratory: please tick → CHAGELADE 21 Burma Road Pooratia, SA 5095 Ph. 98-6129 0820 E. adelada@displotational DSRIBBANES 23 Shard Street Shifford QLO 4053 Ph. 67-3243-7202 E. zamoles brisbane@alaqiobsl.com QCLADSTOME 45 caliemondsh (hve Clinton QLO 4560 Ph. 07-747-15500 E. gladacone.@alaqiobel.com DMACKAY 78 Harbour Road Mackay OLD 4740 Ph: 57 4944 0177 E: mackay@airclobal.com

CIMECHOURING 2-4 Westell Read Springrale VIC 3171 Ph. 93 8549 9900 El samplas melbourne@alaglobal.com CIMADDREE 27 Syriney Road Mediger NSW 2800 Ph. 02 6373 6735 El mediger mell@alaglobal.com UNEWCASTLE 5:565 Madland Rd Mayfield West NSW 2364 Ph -02 4614 2506 Et samples newcastin@alsgictarl.com

DNOVRA 4/13 Geary Place North Novra NSW 2E41 Ph: 624423 2063 E: nevsa@alaglebel.com

UPERTH 10 Hod Way Malega, WA 5090 Ph; 98 9299 7655 Et somples perth@aladobat.com USYONEY 277-269 Woodpark Road Smithfield NSW 2164 Ph. 02 8764 6555 E; complex.sydney@palaglobal.com

DTOWNSVILLE 14-15 Deema Court Bobble CLD #818 Ph: 07 4736 6800 Et townoute environmental/glatsglobal.com

QWOLLONGONG 99 Kenny Street Wollangung NSW 2598 Ph: 92 4225 9125 E: portkerntra@alsglobal.com

CLIENT:	RCA Australia (ROBCAR)		TURNARO	AROUND REQUIREMENTS: Standard TAT (List due date): 5-/2-24					FOR	FOR LABORATORY USE ONLY (Circle)				
OFFICE:	92 Hill Street, Carrington		(Standard TAT	T may be longer for some tests e.g., Ultra			•				#C01/04/09	dy Seat Intac		Yes No N/A
RCA Ref No:	12513e		ALS QUOT	E NO.: EN/222/24				COC SEQU	ENCE NUMBE	R (Circle)	Fred I	gøl/frozen ice it?	r bricks prese	ent upon No N/A
							coc:	1			Rande	om Sample Te	emperature o	n Receipt 2
PROJECT MANAGE	iR: Flona Brooker	CONTACT P	H: 0408 687	529			OF:	1			Olher	comment:		
SAMPLER:	MM/SH	SAMPLER M		70//03313	SHED BY:	~		EIVED BY:		RELINQUISHED BY:				
COC emailed to AL		EDD FORMA	T (or default		7790			255)		W	271	11126	1 6.6
	dministrator@rca.com.au + enviro@i	rca.com.au		DATEITIM	1124	101	(Ne DATI	E/TIME:	12:	۱۸	DATE/TIME	E: `,	400	DATE/TIME: 27/(
Email Invoice to: a	s above			10/	11 - 1 (37 2	. // !]	14.	<u>lu</u>		<u>9-</u>		19/80
COMMENTS/SPECI	IAL HANDLING/STORAGE OR DISF	POSAL:												
ALS	SAMPI	LE DETAILS				ANAL	SIS REQUIR	ED including	SUITES (NB.	Suite Codes	must be listed	to attract sui	te price)	
USE	MATRIX: SOL	LID (S) WATER (W)		CONTAINER INFORMATION		Where M	etals are requ	uired, specify	T otal (unfiltere requi		iired) or Disso	lved (field filte	ered bottle	Additional Information
LAB iD	Sample ID	Date / Time	Matrix	Type & Preservative (refer to codes below)	Total Containers	W05 TRH, BTEXN, 8 dissolved metals	EP132B UT PAH	РАН	Please report Naphthalene results in BOTH BTEXN and PAH sultes	EK055G Ammonia	NT-04 Nërito + Nitrato	W-18 TRH C6-C9 / BTEX	W-0.2 8-metals	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
-	MW1	27.11.2024	Water	2*500ml, AG, 2*100ml, AG, 2 purple vials, 1 purple plastic, 1 red plastic, 1 500ml, green plastic	9	×	x		×	x	×			Double Sample provided for internal QA
2	MW2	26.11.2024	Water	1°500mL AG, 1°100mL AG, 2 purple vials, 1 purple plastic, 1 red plastic, 1 500mL green plastic	7	x	x		x	×	×			
3	MW3	26.11.2024	Water	1*500mL AG, 1*100mL AG, 2 purple vials, 1 purple plastic, 1 red plastic, 1 500mL green plastic	7	x	x		×	х	x			
<u> </u>	MW4	27.11.2024	Water	1*S00mi. AG, 1*100mi. AG, 2 purple vials, 1 purple plastic, 1 red plastic, 1 500mi. green plastic	7	×		x	x	×	×			WATERS CONTAIN HIGH CONCENTRATIONS OF HYDROCARBONS
<u> </u>	MW6	26.11.2024	Water	1 purpie plastic, 1 500mL green plastic	2					x	x			
6	MW10	26.11.2024	Water	1 purple plastic, 1 red plastic, 1 500mL green plastic	3					×	×		×	
1	, QA	26.11.2024	Water	1*500mL AG, 1*100mL AG, 2 purple vials, 1 purple plastic, 1 rod plastic, 1 500mL green plastic	7	×	×		x	x	×			Environmental Division
8	TRIP BLANK	25-11-2-29		vial	1		. 8					х		sydney Work Order Reference ES243866
9	TRIP SPIKE	25.11.2024	Water	vial	1		40	معطم مختشد سر				x		ES243000
Ę,.						54**		Andrew Comment						
					4			1						:

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic, AG = Amber Glass Up 12 Modes AF - Airfreight Unpreserved Plastic
V = VOA Vial HCl Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved Vial SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic Preserved Bottle; SF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

Telephone: +61-2-8784 8565

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2438668

Client : ROBERT CARR & ASSOCIATES P/L Laboratory : Environmental Division Sydney

Contact : MS FIONA BROOKER Contact : Customer Services ES

Address : 92 HILL STREET Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

 Telephone
 : +61 02 4902 9200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 4902 9299
 Facsimile
 : +61-2-8784 8500

Project : 12513e Page : 1 of 3

CARRINGTON NSW 2294

 Order number
 : --- Quote number
 : EP2024ROBCAR0001 (EN/222)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : MH SH

Dates

Date

Delivery Details

Mode of Delivery: UndefinedSecurity Seal: Not AvailableNo. of coolers/boxes: 1Temperature: 2.1 - Ice present

Receipt Detail : No. of samples received / analysed : 9 / 9

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Sydney, NATA accreditation no. 825, site no. 10911.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 27-Nov-2024 Issue Date

Page

2 of 3 ES2438668 Amendment 0 Work Order

Client : ROBERT CARR & ASSOCIATES P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are inclif no sampling default 00:00 on	ry for the execution may contain ad ation of moisture uded in the package. Itime is provided, the date of sampling date wi	the sampling time will g. If no sampling date ll be assumed by the ckets without a time	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EP132B(PAH) Ultra Trace Polynuclear Aromatic Compounds	WATER - NT-04 Nitrite and Nitrate	WATER - W-02 8 Metals	WATER - W-05 TRH/BTEXN/8 Metals	WATER - W-18 TRH(C6 - C9)/BTEXN	WATER - W-26 TRH/BTEXN/PAH/8 Metals
ES2438668-001	26-Nov-2024 00:00	MW2	∀	∀	∀		∀		
ES2438668-002	26-Nov-2024 00:00	MW3	∀	∀	√		∀		
ES2438668-004	27-Nov-2024 00:00	MW4	· ·	, ,	√		<u> </u>		√
ES2438668-005	26-Nov-2024 00:00	MW6	√		∀				<u> </u>
ES2438668-006	26-Nov-2024 00:00	MW10	∀		∀	1			
ES2438668-007	26-Nov-2024 00:00	QA	▼	1	√	Y	✓		
ES2438668-007	25-Nov-2024 00:00	TRIP BLANK	 •		V		–	✓	
E32436006-006	25-1107-2024 00.00	IRIF BLAINK						Y	
Matrix: WATER Laboratory sample ID ES2438668-009	Sampling date / time 25-Nov-2024 00:00	Sample ID TRIP SPIKE	WATER - EP080 ► BTEXN	•					

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

Λ	П	M	INI	IS:	ГΡ	۸٦	$\Gamma \cap$	D

- *AU Certificate of Analysis - NATA (COA)	Email	administrator@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	administrator@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	administrator@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	administrator@rca.com.au
- Chain of Custody (CoC) (COC)	Email	administrator@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	administrator@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	administrator@rca.com.au
ALL INVOICES		

Email

administrator@rca.com.au

ALL INVOICES

- A4 - AU Tax Invoice (INV)

,		
ENVIRO		
- *AU Certificate of Analysis - NATA (COA)	Email	enviro@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	enviro@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	enviro@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	enviro@rca.com.au
- A4 - AU Tax Invoice (INV)	Email	enviro@rca.com.au
- Chain of Custody (CoC) (COC)	Email	enviro@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	enviro@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	enviro@rca.com.au

FIONA BROOKER

HONA BROOKER		
- *AU Certificate of Analysis - NATA (COA)	Email	fionab@rca.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	fionab@rca.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	fionab@rca.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	fionab@rca.com.au
- Chain of Custody (CoC) (COC)	Email	fionab@rca.com.au
- EDI Format - ENMRG (ENMRG)	Email	fionab@rca.com.au
- EDI Format - ESDAT (ESDAT)	Email	fionab@rca.com.au

Appendix D

Summary of Results

Sample Identification	PQL	-	icosystem eline ^A	Human Health (Ingestion)	MW1	MW2	MW3	MW4	MW6 0.58 26/11/2024	MW10 0.00 26/11/2024
Sample Depth (m) ^C	PQL	99% Fresh	95% Fresh		1.60	1.21	1.12	0.92		
Date		99% Flesii	95% Flesh	Guideline ^B	26/11/2024	26/11/2024	26/11/2024	27/11/2024		
Sample Description					Clear to turbid and no odour.	Turbid, brown and no odour.	Clear to turbid, pale brown and no odour.	Turbid, dark grey, oily sheen and strong hydrocarbon odour.	Turbid, brown and no odour.	Turbid, brown and no odour
Sample Purpose				Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	
Sample collected by				RCA - MH/SH	RCA - MH/SH	RCA - MH/SH	RCA - MH/SH	RCA - MH/SH	RCA - MH/SH	
General Waster Quality (field readings)										
pH					6.89	5.9	5.98	6.34	5.16	3.94
Electrical Conductivity (mS/cm)					1.28	7.48	9.43	10.1	9.45	17.2
Benzene, Toluene, Ethylbenzene, Xylene	(BTEX)									
Benzene	1		950	1	<1	<1	<1	<1		
Toluene	2		180	800	<2	<2	<2	<2		
Ethylbenzene	2		80	300	<2	<2	<2	<2		
meta- and para-Xylene	2		275		<2	<2	<2	<2		
ortho-Xylene	2		350		<2	<2	<2	<2		
Total Xylenes	4	<u> </u>		600	2	2	2	2		
Total Recoverable Hydrocarbons (TRH)		•	1		T		#			
TRH C ₆ -C ₁₀	20				<20	<20	<20	210		
TRH >C ₁₀ -C ₁₆	100				330	<100	<100	52200		-
TRH >C ₁₆ -C ₃₄	100				750	170	160	50000		
TRH >C ₃₄ -C ₄₀	100				<100	<100	<100	<570		
TRH C ₆ -C ₄₀	320	7	7		1140	280	270	109560		
			,		1140	200	270	109560		<u>-</u>
Polycyclic Aromatic Hydrocarbons (PAH Acenaphthene	0.1	1	I		0.2	<0.1	<0.1	<47.6	T	
Acenaphthylene	0.1				<0.1	<0.1	<0.1	<47.6		
		0.01					<0.1			
Anthracene ^D	0.1	0.01			<0.1 <0.1	<0.1 <0.1	<0.1	<47.6 <47.6		
Benz(a)anthracene	0.1	0.1		0.01	<0.05	<0.05	<0.05	<47.6		
Benzo(a) pyrene ^D	0.03	0.1		0.01	<0.05	<0.1	<0.03	<47.6		
Benzo(b)&(j)fluoranthene	0.1				<0.1	<0.1	<0.1	<47.6		
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.1				<0.1	<0.1	<0.1	<47.6		
Chrysene	0.1				<0.1	<0.1	<0.1	<47.6		
Dibenz(a,h)anthracene	0.1				<0.1	<0.1	<0.1	<47.6		
Fluoranthene ^D	0.1	1			<0.1	<0.1	<0.1	<47.6		
Fluorene	0.1	,			0.4	0.3	0.1	99.6		
Indeno(1,2,3-c,d)pyrene	0.1				<0.1	<0.1	<0.1	99.0 <47.6		
Naphthalene	0.1	1	16		<0.1	0.1	0.1	109		
Phenanthrene ^D	0.1	0.6	10		<0.1	0.6	0.1	159		
Pyrene	0.1	0.0			0.1	0.0	<0.1	<47.6		
Metals	0.1	1			1 3.1	J	#			1
Arsenic	1	1	13	10	2	3	4	2		1
Cadmium	0.1	1	0.2	2	<0.1	<0.1	<0.1	<0.1		0.2
Chromium	1	1	1	50	<1	<1	<1	2		4
Copper	1		1.4	2000	2	<1	<1	- <1		3
Lead	1		3.4	10	<1	<1	<1	2		5
Mercury ^D	0.1	0.06	0.6	1	<0.1	<0.1	<0.1	<0.1		<0.1
Nickel	1	1	11	-	3	41	20	2		126
Zinc	5		8		5	48	30	9		156
Non Metallic Inorganics							<u> </u>	•		
Ammonia as N	10		pH dependent		1250	920	2370	4170	670	190
Nitrate + Nitrite ^E	10	4	10		200	<100	20	30	34600	<10

All results are in units of μg/L

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

Ecological guidelines in *italics* are low level reliability guidelines

Ecological arsenic guideline based on As (III) for marine and As (V) for fresh, the lowest of presented guidelines.

Toll Group

Groundwater Monitoring Report

Toll Tomago Site

RCA ref:12513e-216/0, December 2024

Drinking Water arsenic guidelines are based on total arsenic

Guidelines for chromium are based on Cr (VI)

Ecological guidelines for mercury are based on inorganic mercury Drinking water guidelines for mercury are based on total mercury

Results for TRH have been compared to TPH guidelines

Results shown in shading are in excess of the 99% aquatic ecosystems guidelines

Results shown in **BOLD** are in excess of the 95% aquatic ecosystems guidelines

Results shown in <u>underline</u> are in excess of the human health (ingestion) guideline

Where summation required (Xylene, TRH, PAH) calculation includes components reported as non detected as 1/2 PQL

Duplicate result used for TRH >C16-C34, arsenic and zinc due to poor RPD

Prepared by: MH Checked by: FB

Page 1 of 1 RCA Australia.

^A % Protection Level for Receiving Water Type.

^B Australian Drinking Water Guidelines.

^C Sample depths presented are as encountered at top of pipe or at ground level if pipe below ground prior to commencement of sampling

^D Bioaccummulative Compounds

^E Guidelines for Lowland (Coastal) Rivers in NSW